
dj-stripe Documentation
Release 2.3.0

Alexander Kavanaugh

May 02, 2020

Getting Started

1 Contents 3
1.1 Installation . 3
1.2 A note on Stripe API versions . 4
1.3 A note on Stripe Elements JS methods . 5
1.4 Checking if a customer has a subscription . 6
1.5 Subscribing a customer to a plan . 6
1.6 Creating a one-off charge for a customer . 7
1.7 Restricting access to only active subscribers . 7
1.8 Managing subscriptions and payment sources . 10
1.9 Creating invoices . 10
1.10 Running reports . 11
1.11 Webhooks . 11
1.12 Manually syncing data with Stripe . 12
1.13 Cookbook . 13
1.14 Context Managers . 16
1.15 Decorators . 16
1.16 Enumerations . 17
1.17 Managers . 33
1.18 Middleware . 34
1.19 Models . 34
1.20 Settings . 94
1.21 Utilities . 98
1.22 Contributing . 99
1.23 Test Fixtures . 103
1.24 Credits . 104
1.25 History . 106
1.26 Support . 127
1.27 Release Process . 127

2 Constraints 131

Index 133

i

ii

dj-stripe Documentation, Release 2.3.0

• Subscription management

• Designed for easy implementation of post-registration subscription forms

• Single-unit purchases

• Works with Django >= 2.2

• Works with Python >= 3.6

• Built-in migrations

• Dead-Easy installation

• Leverages the best of the 3rd party Django package ecosystem

• djstripe namespace so you can have more than one payments related app

• Documented

• 100% Tested

Getting Started 1

dj-stripe Documentation, Release 2.3.0

2 Getting Started

CHAPTER 1

Contents

1.1 Installation

1.1.1 Get the distribution

Install dj-stripe:

pip install dj-stripe

1.1.2 Configuration

Add djstripe to your INSTALLED_APPS:

INSTALLED_APPS =(
...
"djstripe",
...

)

Add to urls.py:

path("stripe/", include("djstripe.urls", namespace="djstripe")),

Tell Stripe about the webhook (Stripe webhook docs can be found here) using the full URL of your endpoint from the
urls.py step above (e.g. https://example.com/stripe/webhook).

Add your Stripe keys and set the operating mode:

STRIPE_LIVE_PUBLIC_KEY = os.environ.get("STRIPE_LIVE_PUBLIC_KEY", "<your publishable
→˓key>")
STRIPE_LIVE_SECRET_KEY = os.environ.get("STRIPE_LIVE_SECRET_KEY", "<your secret key>")
STRIPE_TEST_PUBLIC_KEY = os.environ.get("STRIPE_TEST_PUBLIC_KEY", "<your publishable
→˓key>")

(continues on next page)

3

https://stripe.com/docs/webhooks

dj-stripe Documentation, Release 2.3.0

(continued from previous page)

STRIPE_TEST_SECRET_KEY = os.environ.get("STRIPE_TEST_SECRET_KEY", "<your secret key>")
STRIPE_LIVE_MODE = False # Change to True in production
DJSTRIPE_WEBHOOK_SECRET = "whsec_xxx" # Get it from the section in the Stripe
→˓dashboard where you added the webhook endpoint

Add some payment plans via the Stripe.com dashboard.

Run the commands:

python manage.py migrate

python manage.py djstripe_init_customers

python manage.py djstripe_sync_plans_from_stripe

See https://dj-stripe.readthedocs.io/en/latest/stripe_elements_js.html for notes about usage of the Stripe Elements fron-
tend JS library.

1.1.3 Running Tests

Assuming the tests are run against PostgreSQL:

createdb djstripe
pip install tox
tox

1.2 A note on Stripe API versions

A point that can cause confusion to new users of dj-stripe is that there are several different Stripe API versions in play
at once.

In brief: Don’t touch the STRIPE_API_VERSION setting, but don’t worry, it doesn’t need to match your Stripe
account api version.

See also https://stripe.com/docs/api/versioning

1.2.1 Your Stripe account’s API version

You can find this on your Stripe dashboard labelled “default” here: https://dashboard.stripe.com/developers

For new accounts this will be the latest Stripe version. When upgrading version Stripe only allows you to upgrade to
the latest version. See https://stripe.com/docs/upgrades#how-can-i-upgrade-my-api

This is the version used by Stripe when sending webhook data to you (though during webhook processing, dj-stripe re-
fetches the data with its preferred version). It’s also the default version used by the Stripe API, but dj-stripe overrides
the API version when talking to stripe (this override is triggered on import of djstripe.models).

As a result your Stripe account API version is mostly irrelevant, though from time to time we will increase the
minimum supported API version, and it’s good practise to regularly upgrade to the latest version with appropriate
testing.

4 Chapter 1. Contents

https://dj-stripe.readthedocs.io/en/latest/stripe_elements_js.html
https://stripe.com/docs/api/versioning
https://dashboard.stripe.com/developers
https://stripe.com/docs/upgrades#how-can-i-upgrade-my-api

dj-stripe Documentation, Release 2.3.0

1.2.2 Stripe’s current latest API version

You can find this on your Stripe dashboard labelled “latest” or in Stripe’s API documentation, eg https://stripe.com/
docs/upgrades#api-changelog

This is the version used by new accounts and it’s also “true” internal version of Stripe’s API - see https://stripe.com/
blog/api-versioning

1.2.3 dj-stripe’s API version

This is the Stripe API version used by dj-stripe in all communication with Stripe, including when processing webhooks
(though webhook data is sent to you by Stripe with your API version, we re-fetch the data with dj-stripe’s API version),
this is because the API schema needs to match dj-stripe’s Django model schema.

This is defined by djstripe.settings.DEFAULT_STRIPE_API_VERSION and can be overridden, though
see the warning about doing this.

1.2.4 dj-stripe’s tested version (as mentioned in README)

This is the most recent Stripe account API version used by the maintainers during testing, more recent versions account
versions are probably fine though.

1.3 A note on Stripe Elements JS methods

Note: TLDR: If you haven’t yet migrated to PaymentIntents, prefer stripe.createSource() over stripe.
createToken() for better compatibility with PaymentMethods.

A point that can cause confusion when integrating Stripe on the web is that there are multiple generations of frontend
JS APIs that use Stripe Elements with stripe js v3.

In descending order of preference these are:

1.3.1 Payment Intents (SCA compliant)

The newest and preferred way of handling payments, which supports SCA compliance (3D secure etc).

See https://stripe.com/docs/payments/payment-intents/web

1.3.2 Charges using stripe.createSource()

This creates Source objects within Stripe, and can be used for various different methods of payment (including, but
not limited to cards), but isn’t SCA compliant.

See https://stripe.com/docs/stripe-js/reference#stripe-create-source

The Card Elements Quickstart JS example can be used, except use stripe.createSource instead of stripe.
createToken and the result.source instead of result.token.

See https://github.com/dj-stripe/dj-stripe/blob/master/tests/apps/example/templates/purchase_subscription.html in for
a working example of this.

1.3. A note on Stripe Elements JS methods 5

https://stripe.com/docs/upgrades#api-changelog
https://stripe.com/docs/upgrades#api-changelog
https://stripe.com/blog/api-versioning
https://stripe.com/blog/api-versioning
https://stripe.com/docs/payments/payment-intents/web
https://stripe.com/docs/stripe-js/reference#stripe-create-source
https://stripe.com/docs/payments/cards/collecting/web
https://github.com/dj-stripe/dj-stripe/blob/master/tests/apps/example/templates/purchase_subscription.html

dj-stripe Documentation, Release 2.3.0

1.3.3 Charges using stripe.createToken()

This predates stripe.createSource, and creates legacy Card objects within Stripe, which have some compati-
bility issues with Payment Methods.

If you’re using stripe.createToken, see if you can upgrade to stripe.createSource or ideally to Pay-
ment Intents .

See Card Elements Quickstart JS

1.4 Checking if a customer has a subscription

No content. . . yet

1.5 Subscribing a customer to a plan

For your convenience, dj-stripe provides a djstripe.models.Customer.subscribe() method that will try
to charge the customer immediately unless you specify charge_immediately=False

plan = Plan.objects.get(nickname="one_plan")
customer = Customer.objects.first()
customer.subscribe(plan)

However in some cases djstripe.models.Customer.subscribe() might not support all the arguments
you need for your implementation. When this happens you can just call the official stripe.Customer.
subscribe().

See this example from tests.apps.example.views.PurchaseSubscriptionView.form_valid

Create the stripe Customer, by default subscriber Model is User,
this can be overridden with settings.DJSTRIPE_SUBSCRIBER_MODEL
customer, created = djstripe.models.Customer.get_or_create(subscriber=user)

Add the source as the customer's default card
customer.add_card(stripe_source)

Using the Stripe API, create a subscription for this customer,
using the customer's default payment source
stripe_subscription = stripe.Subscription.create(

customer=customer.id,
items=[{"plan": plan.id}],
collection_method="charge_automatically",
tax_percent=15,
api_key=djstripe.settings.STRIPE_SECRET_KEY,

)

Sync the Stripe API return data to the database,
this way we don't need to wait for a webhook-triggered sync
subscription = djstripe.models.Subscription.sync_from_stripe_data(

stripe_subscription
)

Note that PaymentMethods can be used instead of Cards/Source by substituting

6 Chapter 1. Contents

https://stripe.com/docs/payments/cards/collecting/web
https://github.com/dj-stripe/dj-stripe/releases/tag/1.0.0

dj-stripe Documentation, Release 2.3.0

Add the payment method customer's default
customer.add_payment_method(payment_method)

instead of

Add the source as the customer's default card
customer.add_card(stripe_source)

in the above example. See djstripe.models.Customer.add_payment_method().

1.6 Creating a one-off charge for a customer

No content. . . yet

1.7 Restricting access to only active subscribers

dj-stripe provides three methods to support constraining views to be only accessible to users with active subscriptions:

• Middleware approach to constrain entire projects easily.

• Class-Based View mixin to constrain individual views.

• View decoration to constrain Function-based views.

Warning: anonymous users always raise a ImproperlyConfigured exception.

When anonymous users encounter these components they will raise a django.core.exceptions.
ImproperlyConfigured exception. This is done because dj-stripe is not an authentication system, so it
does a hard error to make it easier for you to catch where content may not be behind authentication systems.

Any project can use one or more of these methods to control access.

1.7.1 Constraining Entire Sites

If you want to quickly constrain an entire site, the djstripe.middleware.
SubscriptionPaymentMiddleware middleware does the following to user requests:

• authenticated users are redirected to djstripe.views.SubscribeFormView unless they:

– have a valid subscription –or–

– are superusers (user.is_superuser==True) –or–

– are staff members (user.is_staff==True).

• anonymous users always raise a django.core.exceptions.ImproperlyConfigured exception
when they encounter these systems. This is done because dj-stripe is not an authentication system.

Example:

Step 1: Add the middleware:

1.6. Creating a one-off charge for a customer 7

https://github.com/dj-stripe/dj-stripe/releases/tag/1.0.0

dj-stripe Documentation, Release 2.3.0

MIDDLEWARE_CLASSES = (
...
'djstripe.middleware.SubscriptionPaymentMiddleware',
...
)

Step 2: Specify exempt URLS:

sample only - customize to your own needs!
djstripe pages are automatically exempt!
DJSTRIPE_SUBSCRIPTION_REQUIRED_EXCEPTION_URLS = (

'home',
'about',
"[spam]", # Anything in the dj-spam namespace

)

Using this example any request on this site that isn’t on the homepage, about, spam, or djstripe pages is redirected to
djstripe.views.SubscribeFormView.

Note: The extensive list of rules for this feature can be found at https://github.com/dj-stripe/dj-stripe/blob/master/
djstripe/middleware.py.

See also:

• Settings

1.7.2 Constraining Class-Based Views

If you want to quickly constrain a single Class-Based View, the djstripe.decorators.
subscription_payment_required decorator does the following to user requests:

• authenticated users are redirected to djstripe.views.SubscribeFormView unless they:

– have a valid subscription –or–

– are superusers (user.is_superuser==True) –or–

– are staff members (user.is_staff==True).

• anonymous users always raise a django.core.exceptions.ImproperlyConfigured exception
when they encounter these systems. This is done because dj-stripe is not an authentication system.

Example:

import necessary Django stuff
from django.http import HttpResponse
from django.views.generic import View
from django.contrib.auth.decorators import login_required

import the wonderful decorator
from djstripe.decorators import subscription_payment_required

import method_decorator which allows us to use function
decorators on Class-Based View dispatch function.
from django.utils.decorators import method_decorator

(continues on next page)

8 Chapter 1. Contents

https://github.com/dj-stripe/dj-stripe/blob/master/djstripe/middleware.py
https://github.com/dj-stripe/dj-stripe/blob/master/djstripe/middleware.py

dj-stripe Documentation, Release 2.3.0

(continued from previous page)

class MyConstrainedView(View):

def get(self, request, *args, **kwargs):
return HttpResponse("I like cheese")

@method_decorator(login_required)
@method_decorator(subscription_payment_required)
def dispatch(self, *args, **kwargs):

return super().dispatch(*args, **kwargs)

If you are unfamiliar with this technique please read the following documentation here.

1.7.3 Constraining Function-Based Views

If you want to quickly constrain a single Function-Based View, the djstripe.decorators.
subscription_payment_required decorator does the following to user requests:

• authenticated users are redirected to djstripe.views.SubscribeFormView unless they:

– have a valid subscription –or–

– are superusers (user.is_superuser==True) –or–

– are staff members (user.is_staff==True).

• anonymous users always raise a django.core.exceptions.ImproperlyConfigured exception
when they encounter these systems. This is done because dj-stripe is not an authentication system.

Example:

import necessary Django stuff
from django.contrib.auth.decorators import login_required
from django.http import HttpResponse

import the wonderful decorator
from djstripe.decorators import subscription_payment_required

@login_required
@subscription_payment_required
def my_constrained_view(request):

return HttpResponse("I like cheese")

1.7.4 Don’t do this!

Described is an anti-pattern. View logic belongs in views.py, not urls.py.

DON'T DO THIS!!!
from django.conf.urls import patterns, url
from django.contrib.auth.decorators import login_required
from djstripe.decorators import subscription_payment_required

from contents import views

(continues on next page)

1.7. Restricting access to only active subscribers 9

https://docs.djangoproject.com/en/1.5/topics/class-based-views/intro/#decorating-the-class

dj-stripe Documentation, Release 2.3.0

(continued from previous page)

urlpatterns = patterns("",

Class-Based View anti-pattern
url(

r"^content/$",

Not using decorators as decorators
Harder to see what's going on
login_required(

subscription_payment_required(
views.ContentDetailView.as_view()

)
),
name="content_detail"

),
Function-Based View anti-pattern
url(

r"^content/$",

Example with function view
login_required(

subscription_payment_required(
views.content_list_view

)
),
name="content_detail"

),
)

1.8 Managing subscriptions and payment sources

1.8.1 Extending subscriptions

Subscription.extend(*delta*)

Subscriptions can be extended by using the Subscription.extend method, which takes a positive timedelta
as its only property. This method is useful if you want to offer time-cards, gift-cards, or some other external way of
subscribing users or extending subscriptions, while keeping the billing handling within Stripe.

Warning: Subscription extensions are achieved by manipulating the trial_end of the subscription instance,
which means that Stripe will change the status to trialing.

1.9 Creating invoices

No content. . . yet

10 Chapter 1. Contents

https://github.com/dj-stripe/dj-stripe/releases/tag/1.0.0

dj-stripe Documentation, Release 2.3.0

1.9.1 Adding line items to invoices

No content. . . yet

1.10 Running reports

No content. . . yet

1.11 Webhooks

1.11.1 Using webhooks in dj-stripe

dj-stripe comes with native support for webhooks as event listeners.

Events allow you to do things like sending an email to a customer when his payment has failed or trial period is ending.

This is how you use them:

from djstripe import webhooks

@webhooks.handler("customer.subscription.trial_will_end")
def my_handler(event, **kwargs):

print("We should probably notify the user at this point")

You can handle all events related to customers like this:

from djstripe import webhooks

@webhooks.handler("customer")
def my_handler(event, **kwargs):

print("We should probably notify the user at this point")

You can also handle different events in the same handler:

from djstripe import webhooks

@webhooks.handler("plan", "product")
def my_handler(event, **kwargs):

print("Triggered webhook " + event.type)

Warning: In order to get registrations picked up, you need to put them in a module is imported like models.py or
make sure you import it manually.

Webhook event creation and processing is now wrapped in a transaction.atomic() block to better handle
webhook errors. This will prevent any additional database modifications you may perform in your custom handler from
being committed should something in the webhook processing chain fail. You can also take advantage of Django’s
transaction.on_commit() function to only perform an action if the transaction successfully commits (meaning
the Event processing worked):

1.10. Running reports 11

https://github.com/dj-stripe/dj-stripe/releases/tag/1.0.0
https://github.com/dj-stripe/dj-stripe/releases/tag/1.0.0
https://stripe.com/docs/recipes/sending-emails-for-failed-payments

dj-stripe Documentation, Release 2.3.0

from django.db import transaction
from djstripe import webhooks

def do_something():
pass # send a mail, invalidate a cache, fire off a Celery task, etc.

@webhooks.handler("plan", "product")
def my_handler(event, **kwargs):

transaction.on_commit(do_something)

1.11.2 Official documentation

Stripe docs for types of Events: https://stripe.com/docs/api/events/types

Stripe docs for Webhooks: https://stripe.com/docs/webhooks

Django docs for transactions: https://docs.djangoproject.com/en/dev/topics/db/transactions/
#performing-actions-after-commit

1.12 Manually syncing data with Stripe

If you’re using dj-stripe’s webhook handlers then data will be automatically synced from Stripe to the Django database,
but in some circumstances you may want to manually sync Stripe API data as well.

1.12.1 Command line

You can sync your database with stripe using the manage command djstripe_sync_models, e.g. to populate an
empty database from an existing Stripe account.

./manage.py djstripe_sync_models

With no arguments this will sync all supported models, or a list of models to sync can be provided.

./manage.py djstripe_sync_models Invoice Subscription

Note that this may be redundant since we recursively sync related objects.

You can manually reprocess events using the management commands djstripe_process_events. By default
this processes all events, but options can be passed to limit the events processed. Note the Stripe API documents a
limitation where events are only guaranteed to be available for 30 days.

all events
./manage.py djstripe_process_events
failed events (events with pending webhooks or where all webhook delivery attempts
→˓failed)
./manage.py djstripe_process_events --failed
filter by event type (all payment_intent events in this example)
./manage.py djstripe_process_events --type payment_intent.*
specific events by ID
./manage.py djstripe_process_events --ids evt_foo evt_bar
more output for debugging processing failures
./manage.py djstripe_process_events -v 2

12 Chapter 1. Contents

https://stripe.com/docs/api/events/types
https://stripe.com/docs/webhooks
https://docs.djangoproject.com/en/dev/topics/db/transactions/#performing-actions-after-commit
https://docs.djangoproject.com/en/dev/topics/db/transactions/#performing-actions-after-commit

dj-stripe Documentation, Release 2.3.0

1.12.2 In Code

To sync in code, for example if you write to the Stripe API and want to work with the resulting dj-stripe object without
having to wait for the webhook trigger.

This can be done using the classmethod sync_from_stripe_data that exists on all dj-stripe model classes.

E.g. creating a product using the Stripe API, and then syncing the API return data to Django using dj-stripe:

import djstripe.models
import djstripe.settings
import stripe

stripe API return value is a dict-like object
stripe_data = stripe.Product.create(

api_key=djstripe.settings.STRIPE_SECRET_KEY,
name="Monthly membership base fee",
type="service",

)

sync_from_stripe_data to save it to the database,
and recursively update any referenced objects
djstripe_obj = djstripe.models.Product.sync_from_stripe_data(stripe_data)

return djstripe_obj

1.13 Cookbook

This is a list of handy recipes that fall outside the domain of normal usage.

1.13.1 Customer User Model has_active_subscription property

Very useful for working inside of templates or other places where you need to check the subscription status repeatedly.
The cached_property decorator caches the result of has_active_subscription for a object instance, optimizing it for
reuse.

-*- coding: utf-8 -*-

from django.contrib.auth.models import AbstractUser
from django.db import models
from django.utils.functional import cached_property

from djstripe.utils import subscriber_has_active_subscription

class User(AbstractUser):

""" Custom fields go here """

def __str__(self):
return self.username

def __unicode__(self):
return self.username

(continues on next page)

1.13. Cookbook 13

dj-stripe Documentation, Release 2.3.0

(continued from previous page)

@cached_property
def has_active_subscription(self):

"""Checks if a user has an active subscription."""
return subscriber_has_active_subscription(self)

Usage:

<ul class="actions">
<h2>{{ object }}</h2>
<!-- first use of request.user.has_active_subscription -->
{% if request.user.has_active_subscription %}

<p>
<small>

edit
</small>

</p>
{% endif %}
<p>{{ object.description }}</p>

<!-- second use of request.user.has_active_subscription -->
{% if request.user.has_active_subscription %}

Add Place
View Places

{% endif %}

1.13.2 Making individual purchases

On the subscriber’s customer object, use the charge method to generate a Stripe charge. In this example, we’re using
the user with ID=1 as the subscriber.

from decimal import Decimal

from django.contrib.auth import get_user_model

from djstripe.models import Customer

user = get_user_model().objects.get(id=1)

customer, created = Customer.get_or_create(subscriber=user)

amount = Decimal(10.00)
customer.charge(amount)

Source code for the Customer.charge method is at https://github.com/dj-stripe/dj-stripe/blob/master/djstripe/models.py

1.13.3 REST API

The subscriptions can be accessed through a REST API. Make sure you have Django Rest Framework installed (https:
//github.com/tomchristie/django-rest-framework).

14 Chapter 1. Contents

https://github.com/dj-stripe/dj-stripe/blob/master/djstripe/models.py
https://github.com/tomchristie/django-rest-framework
https://github.com/tomchristie/django-rest-framework

dj-stripe Documentation, Release 2.3.0

The REST API endpoints require an authenticated user. GET will provide the current subscription of the user. POST
will create a new current subscription. DELETE will cancel the current subscription, based on the settings.

• /subscription/ (GET)

– input

* None

– output (200)

* id (int)

* created (date)

* modified (date)

* plan (string)

* quantity (int)

* start (date)

* status (string)

* cancel_at_period_end (boolean)

* canceled_at (date)

* current_period_end (date)

* current_period_start (date)

* ended_at (date)

* trial_end (date)

* trial_start (date)

* amount (float)

* customer (int)

• /subscription/ (POST)

– input

* stripe_token (string)

* plan (string)

* charge_immediately (boolean, optional) - Does not send an invoice to the Customer immedi-
ately

– output (201)

* stripe_token (string)

* plan (string)

• /subscription/ (DELETE)

– input

* None

– Output (204)

* None

1.13. Cookbook 15

dj-stripe Documentation, Release 2.3.0

1.14 Context Managers

Last Updated 2018-05-24

1.14.1 Temporary API Version

context_managers.stripe_temporary_api_version(validate=True)

Temporarily replace the global api_version used in stripe API calls with the given value.

The original value is restored as soon as context exits.

1.15 Decorators

Last Updated 2018-05-24

1.15.1 Standard Decorators

Payment Required

This couldn’t be autodoc’d for some reason. See djstripe.decorators.subscription_payment_required

1.15.2 Event Handling Decorators

More documentation coming on these soon. For now, see our implementations in djstripe.event_handlers

Specific Event(s) Handler

webhooks.handler()
Decorator that registers a function as a webhook handler.

Functions can be registered for event types (e.g. ‘customer’) or fully qualified event sub-types (e.g. ‘cus-
tomer.subscription.deleted’).

If an event type is specified, the handler will receive callbacks for ALL webhook events of that type. For
example, if ‘customer’ is specified, the handler will receive events for ‘customer.subscription.created’, ‘cus-
tomer.subscription.updated’, etc.

Parameters event_types (str.) – The event type(s) that should be handled.

All Events Handler

webhooks.handler_all()
Decorator that registers a function as a webhook handler for ALL webhook events.

Handles all webhooks regardless of event type or sub-type.

16 Chapter 1. Contents

dj-stripe Documentation, Release 2.3.0

1.16 Enumerations

Last Updated 2019-09-17

1.16.1 ApiErrorCode

class djstripe.enums.ApiErrorCode
Charge failure error codes.

https://stripe.com/docs/error-codes

account_already_exists = 'account_already_exists'

account_country_invalid_address = 'account_country_invalid_address'

account_invalid = 'account_invalid'

account_number_invalid = 'account_number_invalid'

alipay_upgrade_required = 'alipay_upgrade_required'

amount_too_large = 'amount_too_large'

amount_too_small = 'amount_too_small'

api_key_expired = 'api_key_expired'

balance_insufficient = 'balance_insufficient'

bank_account_exists = 'bank_account_exists'

bank_account_unusable = 'bank_account_unusable'

bank_account_unverified = 'bank_account_unverified'

bitcoin_upgrade_required = 'bitcoin_upgrade_required'

card_declined = 'card_declined'

charge_already_captured = 'charge_already_captured'

charge_already_refunded = 'charge_already_refunded'

charge_disputed = 'charge_disputed'

charge_exceeds_source_limit = 'charge_exceeds_source_limit'

charge_expired_for_capture = 'charge_expired_for_capture'

choices = (('account_already_exists', 'Account already exists'), ('account_country_invalid_address', 'Account country invalid address'), ('account_invalid', 'Account invalid'), ('account_number_invalid', 'Account number invalid'), ('alipay_upgrade_required', 'Alipay upgrade required'), ('amount_too_large', 'Amount too large'), ('amount_too_small', 'Amount too small'), ('api_key_expired', 'Api key expired'), ('balance_insufficient', 'Balance insufficient'), ('bank_account_exists', 'Bank account exists'), ('bank_account_unusable', 'Bank account unusable'), ('bank_account_unverified', 'Bank account unverified'), ('bitcoin_upgrade_required', 'Bitcoin upgrade required'), ('card_declined', 'Card was declined'), ('charge_already_captured', 'Charge already captured'), ('charge_already_refunded', 'Charge already refunded'), ('charge_disputed', 'Charge disputed'), ('charge_exceeds_source_limit', 'Charge exceeds source limit'), ('charge_expired_for_capture', 'Charge expired for capture'), ('country_unsupported', 'Country unsupported'), ('coupon_expired', 'Coupon expired'), ('customer_max_subscriptions', 'Customer max subscriptions'), ('email_invalid', 'Email invalid'), ('expired_card', 'Expired card'), ('idempotency_key_in_use', 'Idempotency key in use'), ('incorrect_address', 'Incorrect address'), ('incorrect_cvc', 'Incorrect security code'), ('incorrect_number', 'Incorrect number'), ('incorrect_zip', 'ZIP code failed validation'), ('instant_payouts_unsupported', 'Instant payouts unsupported'), ('invalid_card_type', 'Invalid card type'), ('invalid_charge_amount', 'Invalid charge amount'), ('invalid_cvc', 'Invalid security code'), ('invalid_expiry_month', 'Invalid expiration month'), ('invalid_expiry_year', 'Invalid expiration year'), ('invalid_number', 'Invalid number'), ('invalid_source_usage', 'Invalid source usage'), ('invalid_swipe_data', 'Invalid swipe data'), ('invoice_no_customer_line_items', 'Invoice no customer line items'), ('invoice_no_subscription_line_items', 'Invoice no subscription line items'), ('invoice_not_editable', 'Invoice not editable'), ('invoice_upcoming_none', 'Invoice upcoming none'), ('livemode_mismatch', 'Livemode mismatch'), ('missing', 'No card being charged'), ('not_allowed_on_standard_account', 'Not allowed on standard account'), ('order_creation_failed', 'Order creation failed'), ('order_required_settings', 'Order required settings'), ('order_status_invalid', 'Order status invalid'), ('order_upstream_timeout', 'Order upstream timeout'), ('out_of_inventory', 'Out of inventory'), ('parameter_invalid_empty', 'Parameter invalid empty'), ('parameter_invalid_integer', 'Parameter invalid integer'), ('parameter_invalid_string_blank', 'Parameter invalid string blank'), ('parameter_invalid_string_empty', 'Parameter invalid string empty'), ('parameter_missing', 'Parameter missing'), ('parameter_unknown', 'Parameter unknown'), ('parameters_exclusive', 'Parameters exclusive'), ('payment_intent_authentication_failure', 'Payment intent authentication failure'), ('payment_intent_incompatible_payment_method', 'Payment intent incompatible payment method'), ('payment_intent_invalid_parameter', 'Payment intent invalid parameter'), ('payment_intent_payment_attempt_failed', 'Payment intent payment attempt failed'), ('payment_intent_unexpected_state', 'Payment intent unexpected state'), ('payment_method_unactivated', 'Payment method unactivated'), ('payment_method_unexpected_state', 'Payment method unexpected state'), ('payouts_not_allowed', 'Payouts not allowed'), ('platform_api_key_expired', 'Platform api key expired'), ('postal_code_invalid', 'Postal code invalid'), ('processing_error', 'Processing error'), ('product_inactive', 'Product inactive'), ('rate_limit', 'Rate limit'), ('resource_already_exists', 'Resource already exists'), ('resource_missing', 'Resource missing'), ('routing_number_invalid', 'Routing number invalid'), ('secret_key_required', 'Secret key required'), ('sepa_unsupported_account', 'SEPA unsupported account'), ('shipping_calculation_failed', 'Shipping calculation failed'), ('sku_inactive', 'SKU inactive'), ('state_unsupported', 'State unsupported'), ('tax_id_invalid', 'Tax id invalid'), ('taxes_calculation_failed', 'Taxes calculation failed'), ('testmode_charges_only', 'Testmode charges only'), ('tls_version_unsupported', 'TLS version unsupported'), ('token_already_used', 'Token already used'), ('token_in_use', 'Token in use'), ('transfers_not_allowed', 'Transfers not allowed'), ('upstream_order_creation_failed', 'Upstream order creation failed'), ('url_invalid', 'URL invalid'))

country_unsupported = 'country_unsupported'

coupon_expired = 'coupon_expired'

customer_max_subscriptions = 'customer_max_subscriptions'

email_invalid = 'email_invalid'

expired_card = 'expired_card'

idempotency_key_in_use = 'idempotency_key_in_use'

incorrect_address = 'incorrect_address'

incorrect_cvc = 'incorrect_cvc'

1.16. Enumerations 17

https://stripe.com/docs/error-codes

dj-stripe Documentation, Release 2.3.0

incorrect_number = 'incorrect_number'

incorrect_zip = 'incorrect_zip'

instant_payouts_unsupported = 'instant_payouts_unsupported'

invalid_card_type = 'invalid_card_type'

invalid_charge_amount = 'invalid_charge_amount'

invalid_cvc = 'invalid_cvc'

invalid_expiry_month = 'invalid_expiry_month'

invalid_expiry_year = 'invalid_expiry_year'

invalid_number = 'invalid_number'

invalid_source_usage = 'invalid_source_usage'

invalid_swipe_data = 'invalid_swipe_data'

invoice_no_customer_line_items = 'invoice_no_customer_line_items'

invoice_no_subscription_line_items = 'invoice_no_subscription_line_items'

invoice_not_editable = 'invoice_not_editable'

invoice_upcoming_none = 'invoice_upcoming_none'

livemode_mismatch = 'livemode_mismatch'

missing = 'missing'

not_allowed_on_standard_account = 'not_allowed_on_standard_account'

order_creation_failed = 'order_creation_failed'

order_required_settings = 'order_required_settings'

order_status_invalid = 'order_status_invalid'

order_upstream_timeout = 'order_upstream_timeout'

out_of_inventory = 'out_of_inventory'

parameter_invalid_empty = 'parameter_invalid_empty'

parameter_invalid_integer = 'parameter_invalid_integer'

parameter_invalid_string_blank = 'parameter_invalid_string_blank'

parameter_invalid_string_empty = 'parameter_invalid_string_empty'

parameter_missing = 'parameter_missing'

parameter_unknown = 'parameter_unknown'

parameters_exclusive = 'parameters_exclusive'

payment_intent_authentication_failure = 'payment_intent_authentication_failure'

payment_intent_incompatible_payment_method = 'payment_intent_incompatible_payment_method'

payment_intent_invalid_parameter = 'payment_intent_invalid_parameter'

payment_intent_payment_attempt_failed = 'payment_intent_payment_attempt_failed'

payment_intent_unexpected_state = 'payment_intent_unexpected_state'

payment_method_unactivated = 'payment_method_unactivated'

18 Chapter 1. Contents

dj-stripe Documentation, Release 2.3.0

payment_method_unexpected_state = 'payment_method_unexpected_state'

payouts_not_allowed = 'payouts_not_allowed'

platform_api_key_expired = 'platform_api_key_expired'

postal_code_invalid = 'postal_code_invalid'

processing_error = 'processing_error'

product_inactive = 'product_inactive'

rate_limit = 'rate_limit'

resource_already_exists = 'resource_already_exists'

resource_missing = 'resource_missing'

routing_number_invalid = 'routing_number_invalid'

secret_key_required = 'secret_key_required'

sepa_unsupported_account = 'sepa_unsupported_account'

shipping_calculation_failed = 'shipping_calculation_failed'

sku_inactive = 'sku_inactive'

state_unsupported = 'state_unsupported'

tax_id_invalid = 'tax_id_invalid'

taxes_calculation_failed = 'taxes_calculation_failed'

testmode_charges_only = 'testmode_charges_only'

tls_version_unsupported = 'tls_version_unsupported'

token_already_used = 'token_already_used'

token_in_use = 'token_in_use'

transfers_not_allowed = 'transfers_not_allowed'

upstream_order_creation_failed = 'upstream_order_creation_failed'

url_invalid = 'url_invalid'

1.16.2 AccountType

class djstripe.enums.AccountType

choices = (('custom', 'Custom'), ('express', 'Express'), ('standard', 'Standard'))

custom = 'custom'

express = 'express'

standard = 'standard'

1.16. Enumerations 19

dj-stripe Documentation, Release 2.3.0

1.16.3 BalanceTransactionStatus

class djstripe.enums.BalanceTransactionStatus

available = 'available'

choices = (('available', 'Available'), ('pending', 'Pending'))

pending = 'pending'

1.16.4 BalanceTransactionType

class djstripe.enums.BalanceTransactionType

adjustment = 'adjustment'

advance = 'advance'

advance_funding = 'advance_funding'

application_fee = 'application_fee'

application_fee_refund = 'application_fee_refund'

charge = 'charge'

choices = (('adjustment', 'Adjustment'), ('advance', 'Advance'), ('advance_funding', 'Advance funding'), ('application_fee', 'Application fee'), ('application_fee_refund', 'Application fee refund'), ('charge', 'Charge'), ('connect_collection_transfer', 'Connect collection transfer'), ('issuing_authorization_hold', 'Issuing authorization hold'), ('issuing_authorization_release', 'Issuing authorization release'), ('issuing_transaction', 'Issuing transaction'), ('network_cost', 'Network cost'), ('payment', 'Payment'), ('payment_failure_refund', 'Payment failure refund'), ('payment_refund', 'Payment refund'), ('payout', 'Payout'), ('payout_cancel', 'Payout cancellation'), ('payout_failure', 'Payout failure'), ('refund', 'Refund'), ('refund_failure', 'Refund failure'), ('reserve_transaction', 'Reserve transaction'), ('reserved_funds', 'Reserved funds'), ('stripe_fee', 'Stripe fee'), ('stripe_fx_fee', 'Stripe fx fee'), ('tax_fee', 'Tax fee'), ('topup', 'Topup'), ('topup_reversal', 'Topup reversal'), ('transfer', 'Transfer'), ('transfer_cancel', 'Transfer cancel'), ('transfer_refund', 'Transfer refund'), ('validation', 'Validation'))

connect_collection_transfer = 'connect_collection_transfer'

issuing_authorization_hold = 'issuing_authorization_hold'

issuing_authorization_release = 'issuing_authorization_release'

issuing_transaction = 'issuing_transaction'

network_cost = 'network_cost'

payment = 'payment'

payment_failure_refund = 'payment_failure_refund'

payment_refund = 'payment_refund'

payout = 'payout'

payout_cancel = 'payout_cancel'

payout_failure = 'payout_failure'

refund = 'refund'

refund_failure = 'refund_failure'

reserve_transaction = 'reserve_transaction'

reserved_funds = 'reserved_funds'

stripe_fee = 'stripe_fee'

stripe_fx_fee = 'stripe_fx_fee'

tax_fee = 'tax_fee'

topup = 'topup'

20 Chapter 1. Contents

dj-stripe Documentation, Release 2.3.0

topup_reversal = 'topup_reversal'

transfer = 'transfer'

transfer_cancel = 'transfer_cancel'

transfer_refund = 'transfer_refund'

validation = 'validation'

1.16.5 BankAccountHolderType

class djstripe.enums.BankAccountHolderType

choices = (('company', 'Company'), ('individual', 'Individual'))

company = 'company'

individual = 'individual'

1.16.6 BankAccountStatus

class djstripe.enums.BankAccountStatus

choices = (('errored', 'Errored'), ('new', 'New'), ('validated', 'Validated'), ('verification_failed', 'Verification failed'), ('verified', 'Verified'))

errored = 'errored'

new = 'new'

validated = 'validated'

verification_failed = 'verification_failed'

verified = 'verified'

1.16.7 BusinessType

class djstripe.enums.BusinessType

choices = (('company', 'Company'), ('individual', 'Individual'))

company = 'company'

individual = 'individual'

1.16.8 CaptureMethod

class djstripe.enums.CaptureMethod

automatic = 'automatic'

choices = (('automatic', 'Automatic'), ('manual', 'Manual'))

manual = 'manual'

1.16. Enumerations 21

dj-stripe Documentation, Release 2.3.0

1.16.9 CardCheckResult

class djstripe.enums.CardCheckResult

choices = (('fail', 'Fail'), ('pass', 'Pass'), ('unavailable', 'Unavailable'), ('unchecked', 'Unchecked'))

fail = 'fail'

pass_ = 'pass'

unavailable = 'unavailable'

unchecked = 'unchecked'

1.16.10 CardBrand

class djstripe.enums.CardBrand

AmericanExpress = 'American Express'

DinersClub = 'Diners Club'

Discover = 'Discover'

JCB = 'JCB'

MasterCard = 'MasterCard'

UnionPay = 'UnionPay'

Unknown = 'Unknown'

Visa = 'Visa'

choices = (('American Express', 'American Express'), ('Diners Club', 'Diners Club'), ('Discover', 'Discover'), ('JCB', 'JCB'), ('MasterCard', 'MasterCard'), ('UnionPay', 'UnionPay'), ('Unknown', 'Unknown'), ('Visa', 'Visa'))

1.16.11 CardFundingType

class djstripe.enums.CardFundingType

choices = (('credit', 'Credit'), ('debit', 'Debit'), ('prepaid', 'Prepaid'), ('unknown', 'Unknown'))

credit = 'credit'

debit = 'debit'

prepaid = 'prepaid'

unknown = 'unknown'

1.16.12 CardTokenizationMethod

class djstripe.enums.CardTokenizationMethod

android_pay = 'android_pay'

apple_pay = 'apple_pay'

22 Chapter 1. Contents

dj-stripe Documentation, Release 2.3.0

choices = (('android_pay', 'Android Pay'), ('apple_pay', 'Apple Pay'))

1.16.13 ChargeStatus

class djstripe.enums.ChargeStatus

choices = (('failed', 'Failed'), ('pending', 'Pending'), ('succeeded', 'Succeeded'))

failed = 'failed'

pending = 'pending'

succeeded = 'succeeded'

1.16.14 ConfirmationMethod

class djstripe.enums.ConfirmationMethod

automatic = 'automatic'

choices = (('automatic', 'Automatic'), ('manual', 'Manual'))

manual = 'manual'

1.16.15 CouponDuration

class djstripe.enums.CouponDuration

choices = (('forever', 'Forever'), ('once', 'Once'), ('repeating', 'Multi-month'))

forever = 'forever'

once = 'once'

repeating = 'repeating'

1.16.16 CustomerTaxExempt

class djstripe.enums.CustomerTaxExempt

choices = (('exempt', 'Exempt'), ('none', 'None'), ('reverse', 'Reverse'))

exempt = 'exempt'

none = 'none'

reverse = 'reverse'

1.16. Enumerations 23

dj-stripe Documentation, Release 2.3.0

1.16.17 DisputeReason

class djstripe.enums.DisputeReason

bank_cannot_process = 'bank_cannot_process'

choices = (('bank_cannot_process', 'Bank cannot process'), ('credit_not_processed', 'Credit not processed'), ('customer_initiated', 'Customer-initiated'), ('debit_not_authorized', 'Debit not authorized'), ('duplicate', 'Duplicate'), ('fraudulent', 'Fraudulent'), ('general', 'General'), ('incorrect_account_details', 'Incorrect account details'), ('insufficient_funds', 'Insufficient funds'), ('product_not_received', 'Product not received'), ('product_unacceptable', 'Product unacceptable'), ('subscription_canceled', 'Subscription canceled'), ('unrecognized', 'Unrecognized'))

credit_not_processed = 'credit_not_processed'

customer_initiated = 'customer_initiated'

debit_not_authorized = 'debit_not_authorized'

duplicate = 'duplicate'

fraudulent = 'fraudulent'

general = 'general'

incorrect_account_details = 'incorrect_account_details'

insufficient_funds = 'insufficient_funds'

product_not_received = 'product_not_received'

product_unacceptable = 'product_unacceptable'

subscription_canceled = 'subscription_canceled'

unrecognized = 'unrecognized'

1.16.18 DisputeStatus

class djstripe.enums.DisputeStatus

charge_refunded = 'charge_refunded'

choices = (('charge_refunded', 'Charge refunded'), ('lost', 'Lost'), ('needs_response', 'Needs response'), ('under_review', 'Under review'), ('warning_closed', 'Warning closed'), ('warning_needs_response', 'Warning needs response'), ('warning_under_review', 'Warning under review'), ('won', 'Won'))

lost = 'lost'

needs_response = 'needs_response'

under_review = 'under_review'

warning_closed = 'warning_closed'

warning_needs_response = 'warning_needs_response'

warning_under_review = 'warning_under_review'

won = 'won'

1.16.19 FileUploadPurpose

class djstripe.enums.FileUploadPurpose

choices = (('dispute_evidence', 'Dispute evidence'), ('identity_document', 'Identity document'), ('tax_document_user_upload', 'Tax document user upload'))

dispute_evidence = 'dispute_evidence'

24 Chapter 1. Contents

dj-stripe Documentation, Release 2.3.0

identity_document = 'identity_document'

tax_document_user_upload = 'tax_document_user_upload'

1.16.20 FileUploadType

class djstripe.enums.FileUploadType

choices = (('csv', 'CSV'), ('docx', 'DOCX'), ('jpg', 'JPG'), ('pdf', 'PDF'), ('png', 'PNG'), ('xls', 'XLS'), ('xlsx', 'XLSX'))

csv = 'csv'

docx = 'docx'

jpg = 'jpg'

pdf = 'pdf'

png = 'png'

xls = 'xls'

xlsx = 'xlsx'

1.16.21 InvoiceCollectionMethod

class djstripe.enums.InvoiceCollectionMethod

charge_automatically = 'charge_automatically'

choices = (('charge_automatically', 'Charge automatically'), ('send_invoice', 'Send invoice'))

send_invoice = 'send_invoice'

1.16.22 IntentUsage

class djstripe.enums.IntentUsage

choices = (('off_session', 'Off session'), ('on_session', 'On session'))

off_session = 'off_session'

on_session = 'on_session'

1.16.23 IntentStatus

class djstripe.enums.IntentStatus
Status of Intents which apply both to PaymentIntents and SetupIntents.

canceled = 'canceled'

choices = (('canceled', 'Cancellation invalidates the intent for future confirmation and cannot be undone.'), ('processing', 'Required actions have been handled.'), ('requires_action', 'Payment Method require additional action, such as 3D secure.'), ('requires_confirmation', 'Intent is ready to be confirmed.'), ('requires_payment_method', 'Intent created and requires a Payment Method to be attached.'))

processing = 'processing'

requires_action = 'requires_action'

1.16. Enumerations 25

dj-stripe Documentation, Release 2.3.0

requires_confirmation = 'requires_confirmation'

requires_payment_method = 'requires_payment_method'

1.16.24 PaymentIntentStatus

class djstripe.enums.PaymentIntentStatus

canceled = 'canceled'

choices = (('canceled', 'Cancellation invalidates the intent for future confirmation and cannot be undone.'), ('processing', 'Required actions have been handled.'), ('requires_action', 'Payment Method require additional action, such as 3D secure.'), ('requires_capture', 'Capture the funds on the cards which have been put on holds.'), ('requires_confirmation', 'Intent is ready to be confirmed.'), ('requires_payment_method', 'Intent created and requires a Payment Method to be attached.'), ('succeeded', 'The funds are in your account.'))

processing = 'processing'

requires_action = 'requires_action'

requires_capture = 'requires_capture'

requires_confirmation = 'requires_confirmation'

requires_payment_method = 'requires_payment_method'

succeeded = 'succeeded'

1.16.25 SetupIntentStatus

class djstripe.enums.SetupIntentStatus

canceled = 'canceled'

choices = (('canceled', 'Cancellation invalidates the intent for future confirmation and cannot be undone.'), ('processing', 'Required actions have been handled.'), ('requires_action', 'Payment Method require additional action, such as 3D secure.'), ('requires_confirmation', 'Intent is ready to be confirmed.'), ('requires_payment_method', 'Intent created and requires a Payment Method to be attached.'), ('succeeded', 'Setup was successful and the payment method is optimized for future payments.'))

processing = 'processing'

requires_action = 'requires_action'

requires_confirmation = 'requires_confirmation'

requires_payment_method = 'requires_payment_method'

succeeded = 'succeeded'

1.16.26 PayoutFailureCode

class djstripe.enums.PayoutFailureCode
Payout failure error codes.

https://stripe.com/docs/api#payout_failures

account_closed = 'account_closed'

account_frozen = 'account_frozen'

bank_account_restricted = 'bank_account_restricted'

bank_ownership_changed = 'bank_ownership_changed'

choices = (('account_closed', 'Bank account has been closed.'), ('account_frozen', 'Bank account has been frozen.'), ('bank_account_restricted', 'Bank account has restrictions on payouts allowed.'), ('bank_ownership_changed', 'Destination bank account has changed ownership.'), ('could_not_process', 'Bank could not process payout.'), ('debit_not_authorized', 'Debit transactions not approved on the bank account.'), ('insufficient_funds', 'Stripe account has insufficient funds.'), ('invalid_account_number', 'Invalid account number'), ('invalid_currency', 'Bank account does not support currency.'), ('no_account', 'Bank account could not be located.'), ('unsupported_card', 'Card no longer supported.'))

could_not_process = 'could_not_process'

26 Chapter 1. Contents

https://stripe.com/docs/api#payout_failures

dj-stripe Documentation, Release 2.3.0

debit_not_authorized = 'debit_not_authorized'

insufficient_funds = 'insufficient_funds'

invalid_account_number = 'invalid_account_number'

invalid_currency = 'invalid_currency'

no_account = 'no_account'

unsupported_card = 'unsupported_card'

1.16.27 PayoutMethod

class djstripe.enums.PayoutMethod

choices = (('instant', 'Instant'), ('standard', 'Standard'))

instant = 'instant'

standard = 'standard'

1.16.28 PayoutStatus

class djstripe.enums.PayoutStatus

canceled = 'canceled'

choices = (('canceled', 'Canceled'), ('failed', 'Failed'), ('in_transit', 'In transit'), ('paid', 'Paid'), ('pending', 'Pending'))

failed = 'failed'

in_transit = 'in_transit'

paid = 'paid'

pending = 'pending'

1.16.29 PayoutType

class djstripe.enums.PayoutType

bank_account = 'bank_account'

card = 'card'

choices = (('bank_account', 'Bank account'), ('card', 'Card'))

1.16.30 PlanAggregateUsage

class djstripe.enums.PlanAggregateUsage

choices = (('last_during_period', 'Last during period'), ('last_ever', 'Last ever'), ('max', 'Max'), ('sum', 'Sum'))

last_during_period = 'last_during_period'

1.16. Enumerations 27

dj-stripe Documentation, Release 2.3.0

last_ever = 'last_ever'

max = 'max'

sum = 'sum'

1.16.31 PlanBillingScheme

class djstripe.enums.PlanBillingScheme

choices = (('per_unit', 'Per unit'), ('tiered', 'Tiered'))

per_unit = 'per_unit'

tiered = 'tiered'

1.16.32 PlanInterval

class djstripe.enums.PlanInterval

choices = (('day', 'Day'), ('month', 'Month'), ('week', 'Week'), ('year', 'Year'))

day = 'day'

month = 'month'

week = 'week'

year = 'year'

1.16.33 PlanUsageType

class djstripe.enums.PlanUsageType

choices = (('licensed', 'Licensed'), ('metered', 'Metered'))

licensed = 'licensed'

metered = 'metered'

1.16.34 PlanTiersMode

class djstripe.enums.PlanTiersMode

choices = (('graduated', 'Graduated'), ('volume', 'Volume-based'))

graduated = 'graduated'

volume = 'volume'

28 Chapter 1. Contents

dj-stripe Documentation, Release 2.3.0

1.16.35 ProductType

class djstripe.enums.ProductType

choices = (('good', 'Good'), ('service', 'Service'))

good = 'good'

service = 'service'

1.16.36 ScheduledQueryRunStatus

class djstripe.enums.ScheduledQueryRunStatus

canceled = 'canceled'

choices = (('canceled', 'Canceled'), ('failed', 'Failed'), ('timed_out', 'Timed out'))

failed = 'failed'

timed_out = 'timed_out'

1.16.37 SourceFlow

class djstripe.enums.SourceFlow

choices = (('code_verification', 'Code verification'), ('none', 'None'), ('receiver', 'Receiver'), ('redirect', 'Redirect'))

code_verification = 'code_verification'

none = 'none'

receiver = 'receiver'

redirect = 'redirect'

1.16.38 SourceStatus

class djstripe.enums.SourceStatus

canceled = 'canceled'

chargeable = 'chargeable'

choices = (('canceled', 'Canceled'), ('chargeable', 'Chargeable'), ('consumed', 'Consumed'), ('failed', 'Failed'), ('pending', 'Pending'))

consumed = 'consumed'

failed = 'failed'

pending = 'pending'

1.16. Enumerations 29

dj-stripe Documentation, Release 2.3.0

1.16.39 SourceType

class djstripe.enums.SourceType

ach_credit_transfer = 'ach_credit_transfer'

ach_debit = 'ach_debit'

alipay = 'alipay'

bancontact = 'bancontact'

bitcoin = 'bitcoin'

card = 'card'

card_present = 'card_present'

choices = (('ach_credit_transfer', 'ACH Credit Transfer'), ('ach_debit', 'ACH Debit'), ('alipay', 'Alipay'), ('bancontact', 'Bancontact'), ('bitcoin', 'Bitcoin'), ('card', 'Card'), ('card_present', 'Card present'), ('eps', 'EPS'), ('giropay', 'Giropay'), ('ideal', 'iDEAL'), ('p24', 'P24'), ('paper_check', 'Paper check'), ('sepa_credit_transfer', 'SEPA credit transfer'), ('sepa_debit', 'SEPA Direct Debit'), ('sofort', 'SOFORT'), ('three_d_secure', '3D Secure'))

eps = 'eps'

giropay = 'giropay'

ideal = 'ideal'

p24 = 'p24'

paper_check = 'paper_check'

sepa_credit_transfer = 'sepa_credit_transfer'

sepa_debit = 'sepa_debit'

sofort = 'sofort'

three_d_secure = 'three_d_secure'

1.16.40 LegacySourceType

class djstripe.enums.LegacySourceType

alipay_account = 'alipay_account'

bank_account = 'bank_account'

bitcoin_receiver = 'bitcoin_receiver'

card = 'card'

choices = (('alipay_account', 'Alipay account'), ('bank_account', 'Bank account'), ('bitcoin_receiver', 'Bitcoin receiver'), ('card', 'Card'))

1.16.41 RefundFailureReason

class djstripe.enums.RefundFailureReason

choices = (('expired_or_canceled_card', 'Expired or canceled card'), ('lost_or_stolen_card', 'Lost or stolen card'), ('unknown', 'Unknown'))

expired_or_canceled_card = 'expired_or_canceled_card'

lost_or_stolen_card = 'lost_or_stolen_card'

30 Chapter 1. Contents

dj-stripe Documentation, Release 2.3.0

unknown = 'unknown'

1.16.42 RefundReason

class djstripe.enums.RefundReason

choices = (('duplicate', 'Duplicate charge'), ('expired_uncaptured_charge', 'Expired uncaptured charge'), ('fraudulent', 'Fraudulent'), ('requested_by_customer', 'Requested by customer'))

duplicate = 'duplicate'

expired_uncaptured_charge = 'expired_uncaptured_charge'

fraudulent = 'fraudulent'

requested_by_customer = 'requested_by_customer'

1.16.43 RefundStatus

class djstripe.enums.RefundStatus

canceled = 'canceled'

choices = (('canceled', 'Canceled'), ('failed', 'Failed'), ('pending', 'Pending'), ('succeeded', 'Succeeded'))

failed = 'failed'

pending = 'pending'

succeeded = 'succeeded'

1.16.44 SourceUsage

class djstripe.enums.SourceUsage

choices = (('reusable', 'Reusable'), ('single_use', 'Single-use'))

reusable = 'reusable'

single_use = 'single_use'

1.16.45 SourceCodeVerificationStatus

class djstripe.enums.SourceCodeVerificationStatus

choices = (('failed', 'Failed'), ('pending', 'Pending'), ('succeeded', 'Succeeded'))

failed = 'failed'

pending = 'pending'

succeeded = 'succeeded'

1.16. Enumerations 31

dj-stripe Documentation, Release 2.3.0

1.16.46 SourceRedirectFailureReason

class djstripe.enums.SourceRedirectFailureReason

choices = (('declined', 'Declined'), ('processing_error', 'Processing error'), ('user_abort', 'User-aborted'))

declined = 'declined'

processing_error = 'processing_error'

user_abort = 'user_abort'

1.16.47 SourceRedirectStatus

class djstripe.enums.SourceRedirectStatus

choices = (('failed', 'Failed'), ('not_required', 'Not required'), ('pending', 'Pending'), ('succeeded', 'Succeeded'))

failed = 'failed'

not_required = 'not_required'

pending = 'pending'

succeeded = 'succeeded'

1.16.48 SubmitTypeStatus

class djstripe.enums.SubmitTypeStatus

auto = 'auto'

book = 'book'

choices = (('auto', 'Auto'), ('book', 'Book'), ('donate', 'donate'), ('pay', 'pay'))

donate = 'donate'

pay = 'pay'

1.16.49 SubscriptionStatus

class djstripe.enums.SubscriptionStatus

active = 'active'

canceled = 'canceled'

choices = (('active', 'Active'), ('canceled', 'Canceled'), ('incomplete', 'Incomplete'), ('incomplete_expired', 'Incomplete Expired'), ('past_due', 'Past due'), ('trialing', 'Trialing'), ('unpaid', 'Unpaid'))

incomplete = 'incomplete'

incomplete_expired = 'incomplete_expired'

past_due = 'past_due'

trialing = 'trialing'

32 Chapter 1. Contents

dj-stripe Documentation, Release 2.3.0

unpaid = 'unpaid'

1.17 Managers

Last Updated 2018-05-24

1.17.1 SubscriptionManager

class djstripe.managers.SubscriptionManager
Manager used in models.Subscription.

started_during(year, month)
Return Subscriptions not in trial status between a certain time range.

active()
Return active Subscriptions.

canceled()
Return canceled Subscriptions.

canceled_during(year, month)
Return Subscriptions canceled during a certain time range.

started_plan_summary_for(year, month)
Return started_during Subscriptions with plan counts annotated.

active_plan_summary()
Return active Subscriptions with plan counts annotated.

canceled_plan_summary_for(year, month)
Return Subscriptions canceled within a time range with plan counts annotated.

churn()
Return number of canceled Subscriptions divided by active Subscriptions.

1.17.2 TransferManager

class djstripe.managers.TransferManager
Manager used by models.Transfer.

during(year, month)
Return Transfers between a certain time range.

paid_totals_for(year, month)
Return paid Transfers during a certain year, month with total amounts annotated.

1.17.3 ChargeManager

class djstripe.managers.ChargeManager
Manager used by models.Charge.

during(year, month)
Return Charges between a certain time range based on created.

paid_totals_for(year, month)
Return paid Charges during a certain year, month with total amount, fee and refunded annotated.

1.17. Managers 33

dj-stripe Documentation, Release 2.3.0

1.18 Middleware

Last Updated 2018-05-24

1.18.1 SubscriptionPaymentMiddleware

class djstripe.middleware.SubscriptionPaymentMiddleware(get_response=None)
Used to redirect users from subcription-locked request destinations.

Rules:

• “(app_name)” means everything from this app is exempt

• “[namespace]” means everything with this name is exempt

• “namespace:name” means this namespaced URL is exempt

• “name” means this URL is exempt

• The entire djstripe namespace is exempt

• If settings.DEBUG is True, then django-debug-toolbar is exempt

• A ‘fn:’ prefix means the rest of the URL is fnmatch’d.

Example:

DJSTRIPE_SUBSCRIPTION_REQUIRED_EXCEPTION_URLS = (
"[blogs]", # Anything in the blogs namespace
"products:detail", # A ProductDetail view you want shown to non-payers
"home", # Site homepage
"fn:/accounts*", # anything in the accounts/ URL path

)

1.19 Models

Models hold the bulk of the functionality included in the dj-stripe package. Each model is tied closely to its corre-
sponding object in the stripe dashboard. Fields that are not implemented for each model have a short reason behind
the decision in the docstring for each model.

Last Updated 2019-12-21

1.19.1 Core Resources

Balance Transaction

class djstripe.models.BalanceTransaction(*args, **kwargs)
A single transaction that updates the Stripe balance.

Stripe documentation: https://stripe.com/docs/api#balance_transaction_object

Parameters

• djstripe_id (BigAutoField) – Id

• id (StripeIdField) – Id

34 Chapter 1. Contents

https://stripe.com/docs/api#balance_transaction_object

dj-stripe Documentation, Release 2.3.0

• livemode (NullBooleanField) – Livemode. Null here indicates that the livemode
status is unknown or was previously unrecorded. Otherwise, this field indicates whether this
record comes from Stripe test mode or live mode operation.

• created (StripeDateTimeField) – Created. The datetime this object was created
in stripe.

• metadata (JSONField) – Metadata. A set of key/value pairs that you can attach to an
object. It can be useful for storing additional information about an object in a structured
format.

• description (TextField) – Description. A description of this object.

• djstripe_created (DateTimeField) – Djstripe created

• djstripe_updated (DateTimeField) – Djstripe updated

• amount (StripeQuantumCurrencyAmountField) – Amount. Gross amount of the
transaction, in cents.

• available_on (StripeDateTimeField) – Available on. The date the transaction’s
net funds will become available in the Stripe balance.

• currency (StripeCurrencyCodeField) – Currency. Three-letter ISO currency
code

• exchange_rate (DecimalField) – Exchange rate

• fee (StripeQuantumCurrencyAmountField) – Fee. Fee (in cents) paid for this
transaction.

• fee_details (JSONField) – Fee details

• net (StripeQuantumCurrencyAmountField) – Net. Net amount of the transac-
tion, in cents.

• status (StripeEnumField) – Status

• type (StripeEnumField) – Type

classmethod BalanceTransaction.api_list(api_key=”, **kwargs)
Call the stripe API’s list operation for this model.

Parameters api_key (string) – The api key to use for this request. Defaults to
djstripe_settings.STRIPE_SECRET_KEY.

See Stripe documentation for accepted kwargs for each object.

Returns an iterator over all items in the query

BalanceTransaction.api_retrieve(api_key=None, stripe_account=None)
Call the stripe API’s retrieve operation for this model.

Parameters

• api_key (string) – The api key to use for this request. Defaults to set-
tings.STRIPE_SECRET_KEY.

• stripe_account (string) – The optional connected account for which this request is
being made.

BalanceTransaction.get_stripe_dashboard_url()
Get the stripe dashboard url for this object.

1.19. Models 35

dj-stripe Documentation, Release 2.3.0

classmethod BalanceTransaction.sync_from_stripe_data(data)
Syncs this object from the stripe data provided.

Foreign keys will also be retrieved and synced recursively.

Parameters data (dict) – stripe object

Return type cls

Charge

class djstripe.models.Charge(*args, **kwargs)
To charge a credit or a debit card, you create a charge object. You can retrieve and refund individual charges as
well as list all charges. Charges are identified by a unique random ID.

Stripe documentation: https://stripe.com/docs/api/python#charges

Parameters

• djstripe_id (BigAutoField) – Id

• id (StripeIdField) – Id

• livemode (NullBooleanField) – Livemode. Null here indicates that the livemode
status is unknown or was previously unrecorded. Otherwise, this field indicates whether this
record comes from Stripe test mode or live mode operation.

• created (StripeDateTimeField) – Created. The datetime this object was created
in stripe.

• metadata (JSONField) – Metadata. A set of key/value pairs that you can attach to an
object. It can be useful for storing additional information about an object in a structured
format.

• description (TextField) – Description. A description of this object.

• djstripe_created (DateTimeField) – Djstripe created

• djstripe_updated (DateTimeField) – Djstripe updated

• amount (StripeDecimalCurrencyAmountField) – Amount. Amount charged (as
decimal).

• amount_refunded (StripeDecimalCurrencyAmountField) – Amount re-
funded. Amount (as decimal) refunded (can be less than the amount attribute on the charge
if a partial refund was issued).

• balance_transaction (ForeignKey to BalanceTransaction) – Balance trans-
action. The balance transaction that describes the impact of this charge on your account
balance (not including refunds or disputes).

• captured (BooleanField) – Captured. If the charge was created without capturing,
this boolean represents whether or not it is still uncaptured or has since been captured.

• currency (StripeCurrencyCodeField) – Currency. The currency in which the
charge was made.

• customer (ForeignKey to Customer) – Customer. The customer associated with this
charge.

• account (ForeignKey to Account) – Account. The account the charge was made on
behalf of. Null here indicates that this value was never set.

36 Chapter 1. Contents

https://stripe.com/docs/api/python#charges

dj-stripe Documentation, Release 2.3.0

• dispute (ForeignKey to Dispute) – Dispute. Details about the dispute if the charge has
been disputed.

• failure_code (StripeEnumField) – Failure code. Error code explaining reason for
charge failure if available.

• failure_message (TextField) – Failure message. Message to user further explain-
ing reason for charge failure if available.

• fraud_details (JSONField) – Fraud details. Hash with information on fraud assess-
ments for the charge.

• invoice (ForeignKey to Invoice) – Invoice. The invoice this charge is for if one exists.

• outcome (JSONField) – Outcome. Details about whether or not the payment was ac-
cepted, and why.

• paid (BooleanField) – Paid. True if the charge succeeded, or was successfully autho-
rized for later capture, False otherwise.

• payment_intent (ForeignKey to PaymentIntent) – Payment intent. PaymentIntent
associated with this charge, if one exists.

• payment_method (ForeignKey to PaymentMethod) – Payment method. Payment-
Method used in this charge.

• payment_method_details (JSONField) – Payment method details. Details about
the payment method at the time of the transaction.

• receipt_email (TextField) – Receipt email. The email address that the receipt for
this charge was sent to.

• receipt_number (CharField) – Receipt number. The transaction number that ap-
pears on email receipts sent for this charge.

• receipt_url (TextField) – Receipt url. This is the URL to view the receipt for this
charge. The receipt is kept up-to-date to the latest state of the charge, including any refunds.
If the charge is for an Invoice, the receipt will be stylized as an Invoice receipt.

• refunded (BooleanField) – Refunded. Whether or not the charge has been fully
refunded. If the charge is only partially refunded, this attribute will still be false.

• shipping (JSONField) – Shipping. Shipping information for the charge

• source (PaymentMethodForeignKey to DjstripePaymentMethod) – Source. The
source used for this charge.

• statement_descriptor (CharField) – Statement descriptor. An arbitrary string
to be displayed on your customer’s credit card statement. The statement description may
not include <>”’ characters, and will appear on your customer’s statement in capital letters.
Non-ASCII characters are automatically stripped. While most banks display this informa-
tion consistently, some may display it incorrectly or not at all.

• status (StripeEnumField) – Status. The status of the payment.

• transfer (ForeignKey to Transfer) – Transfer. The transfer to the destination account
(only applicable if the charge was created using the destination parameter).

• transfer_group (CharField) – Transfer group. A string that identifies this transac-
tion as part of a group.

classmethod Charge.api_list(api_key=”, **kwargs)
Call the stripe API’s list operation for this model.

1.19. Models 37

dj-stripe Documentation, Release 2.3.0

Parameters api_key (string) – The api key to use for this request. Defaults to
djstripe_settings.STRIPE_SECRET_KEY.

See Stripe documentation for accepted kwargs for each object.

Returns an iterator over all items in the query

Charge.api_retrieve(api_key=None, stripe_account=None)
Call the stripe API’s retrieve operation for this model.

Parameters

• api_key (string) – The api key to use for this request. Defaults to set-
tings.STRIPE_SECRET_KEY.

• stripe_account (string) – The optional connected account for which this request is
being made.

Charge.get_stripe_dashboard_url()
Get the stripe dashboard url for this object.

Charge.disputed

Charge.refund(amount=None, reason=None)
Initiate a refund. If amount is not provided, then this will be a full refund.

Parameters

• amount (Decimal) – A positive decimal amount representing how much of this charge to
refund. Can only refund up to the unrefunded amount remaining of the charge.

• reason – String indicating the reason for the refund. If set, possible val-
ues are duplicate, fraudulent, and requested_by_customer. Specifying
fraudulent as the reason when you believe the charge to be fraudulent will help Stripe
improve their fraud detection algorithms.

• reason – str

Returns Charge object

Return type Charge

Charge.capture()
Capture the payment of an existing, uncaptured, charge. This is the second half of the two-step payment flow,
where first you created a charge with the capture option set to False.

See https://stripe.com/docs/api#capture_charge

Charge.str_parts()
Extend this to add information to the string representation of the object

Return type list of str

classmethod Charge.sync_from_stripe_data(data)
Syncs this object from the stripe data provided.

Foreign keys will also be retrieved and synced recursively.

Parameters data (dict) – stripe object

Return type cls

38 Chapter 1. Contents

https://stripe.com/docs/api#capture_charge

dj-stripe Documentation, Release 2.3.0

Customer

class djstripe.models.Customer(*args, **kwargs)
Customer objects allow you to perform recurring charges and track multiple charges that are associated with the
same customer.

Stripe documentation: https://stripe.com/docs/api/python#customers

Parameters

• djstripe_id (BigAutoField) – Id

• id (StripeIdField) – Id

• livemode (NullBooleanField) – Livemode. Null here indicates that the livemode
status is unknown or was previously unrecorded. Otherwise, this field indicates whether this
record comes from Stripe test mode or live mode operation.

• created (StripeDateTimeField) – Created. The datetime this object was created
in stripe.

• metadata (JSONField) – Metadata. A set of key/value pairs that you can attach to an
object. It can be useful for storing additional information about an object in a structured
format.

• description (TextField) – Description. A description of this object.

• djstripe_created (DateTimeField) – Djstripe created

• djstripe_updated (DateTimeField) – Djstripe updated

• address (JSONField) – Address. The customer’s address.

• balance (StripeQuantumCurrencyAmountField) – Balance. Current balance
(in cents), if any, being stored on the customer’s account. If negative, the customer has
credit to apply to the next invoice. If positive, the customer has an amount owed that will be
added to the next invoice. The balance does not refer to any unpaid invoices; it solely takes
into account amounts that have yet to be successfully applied to any invoice. This balance is
only taken into account for recurring billing purposes (i.e., subscriptions, invoices, invoice
items).

• business_vat_id (CharField) – Business vat id. The customer’s VAT identification
number.

• currency (StripeCurrencyCodeField) – Currency. The currency the customer
can be charged in for recurring billing purposes

• default_source (PaymentMethodForeignKey to DjstripePaymentMethod) –
Default source

• delinquent (BooleanField) – Delinquent. Whether or not the latest charge for the
customer’s latest invoice has failed.

• coupon (ForeignKey to Coupon) – Coupon

• coupon_start (StripeDateTimeField) – Coupon start. If a coupon is present, the
date at which it was applied.

• coupon_end (StripeDateTimeField) – Coupon end. If a coupon is present and has
a limited duration, the date that the discount will end.

• email (TextField) – Email

1.19. Models 39

https://stripe.com/docs/api/python#customers

dj-stripe Documentation, Release 2.3.0

• invoice_prefix (CharField) – Invoice prefix. The prefix for the customer used to
generate unique invoice numbers.

• invoice_settings (JSONField) – Invoice settings. The customer’s default invoice
settings.

• default_payment_method (ForeignKey to PaymentMethod) – Default payment
method. default payment method used for subscriptions and invoices for the customer.

• name (TextField) – Name. The customer’s full name or business name.

• phone (TextField) – Phone. The customer’s phone number.

• preferred_locales (JSONField) – Preferred locales. The customer’s preferred lo-
cales (languages), ordered by preference.

• shipping (JSONField) – Shipping. Shipping information associated with the customer.

• tax_exempt (StripeEnumField) – Tax exempt. Describes the customer’s tax ex-
emption status. When set to reverse, invoice and receipt PDFs include the text “Reverse
charge”.

• subscriber (ForeignKey to User) – Subscriber

• date_purged (DateTimeField) – Date purged

classmethod Customer.api_list(api_key=”, **kwargs)
Call the stripe API’s list operation for this model.

Parameters api_key (string) – The api key to use for this request. Defaults to
djstripe_settings.STRIPE_SECRET_KEY.

See Stripe documentation for accepted kwargs for each object.

Returns an iterator over all items in the query

Customer.api_retrieve(api_key=None, stripe_account=None)
Call the stripe API’s retrieve operation for this model.

Parameters

• api_key (string) – The api key to use for this request. Defaults to set-
tings.STRIPE_SECRET_KEY.

• stripe_account (string) – The optional connected account for which this request is
being made.

Customer.get_stripe_dashboard_url()
Get the stripe dashboard url for this object.

classmethod Customer.get_or_create(subscriber, livemode=False, stripe_account=None)
Get or create a dj-stripe customer.

Parameters

• subscriber (User) – The subscriber model instance for which to get or create a cus-
tomer.

• livemode (bool) – Whether to get the subscriber in live or test mode.

Customer.legacy_cards
Model field: customer, accesses the M2M Card model.

Customer.credits
The customer is considered to have credits if their balance is below 0.

40 Chapter 1. Contents

dj-stripe Documentation, Release 2.3.0

Customer.customer_payment_methods
An iterable of all of the customer’s payment methods (sources, then legacy cards)

Customer.pending_charges
The customer is considered to have pending charges if their balance is above 0.

Customer.subscribe(plan, charge_immediately=True, application_fee_percent=None, coupon=None,
quantity=None, metadata=None, tax_percent=None, billing_cycle_anchor=None,
trial_end=None, trial_from_plan=None, trial_period_days=None)

Subscribes this customer to a plan.

Parameters

• plan (Plan or string (plan ID)) – The plan to which to subscribe the customer.

• application_fee_percent (Decimal. Precision is 2; anything
more will be ignored. A positive decimal between 1 and 100.) –
This represents the percentage of the subscription invoice subtotal that will be transferred
to the application owner’s Stripe account. The request must be made with an OAuth key in
order to set an application fee percentage.

• coupon (string) – The code of the coupon to apply to this subscription. A coupon
applied to a subscription will only affect invoices created for that particular subscription.

• quantity (integer) – The quantity applied to this subscription. Default is 1.

• metadata (dict) – A set of key/value pairs useful for storing additional information.

• tax_percent (Decimal. Precision is 2; anything more will be
ignored. A positive decimal between 1 and 100.) – This represents the
percentage of the subscription invoice subtotal that will be calculated and added as tax to
the final amount each billing period.

• billing_cycle_anchor (datetime) – A future timestamp to anchor the subscrip-
tion’s billing cycle. This is used to determine the date of the first full invoice, and, for plans
with month or year intervals, the day of the month for subsequent invoices.

• trial_end (datetime) – The end datetime of the trial period the customer will get
before being charged for the first time. If set, this will override the default trial period of the
plan the customer is being subscribed to. The special value now can be provided to end the
customer’s trial immediately.

• charge_immediately (boolean) – Whether or not to charge for the subscription
upon creation. If False, an invoice will be created at the end of this period.

• trial_from_plan (boolean) – Indicates if a plan’s trial_period_days should be ap-
plied to the subscription. Setting trial_end per subscription is preferred, and this defaults to
false. Setting this flag to true together with trial_end is not allowed.

• trial_period_days (integer) – Integer representing the number of trial period days
before the customer is charged for the first time. This will always overwrite any trials that
might apply via a subscribed plan.

Customer.charge(amount, currency=None, application_fee=None, capture=None, description=None,
destination=None, metadata=None, shipping=None, source=None, state-
ment_descriptor=None, idempotency_key=None)

Creates a charge for this customer.

Parameters not implemented:

• receipt_email - Since this is a charge on a customer, the customer’s email address is used.

Parameters

1.19. Models 41

dj-stripe Documentation, Release 2.3.0

• amount (Decimal. Precision is 2; anything more will be
ignored.) – The amount to charge.

• currency (string) – 3-letter ISO code for currency

• application_fee (Decimal. Precision is 2; anything more will
be ignored.) – A fee that will be applied to the charge and transferred to the platform
owner’s account.

• capture (bool) – Whether or not to immediately capture the charge. When false, the
charge issues an authorization (or pre-authorization), and will need to be captured later.
Uncaptured charges expire in 7 days. Default is True

• description (string) – An arbitrary string.

• destination (Account) – An account to make the charge on behalf of.

• metadata (dict) – A set of key/value pairs useful for storing additional information.

• shipping (dict) – Shipping information for the charge.

• source (string, Source) – The source to use for this charge. Must be a source
attributed to this customer. If None, the customer’s default source is used. Can be either the
id of the source or the source object itself.

• statement_descriptor (string) – An arbitrary string to be displayed on the cus-
tomer’s credit card statement.

Customer.add_invoice_item(amount, currency, description=None, discountable=None, in-
voice=None, metadata=None, subscription=None)

Adds an arbitrary charge or credit to the customer’s upcoming invoice. Different than creating a charge. Charges
are separate bills that get processed immediately. Invoice items are appended to the customer’s next invoice.
This is extremely useful when adding surcharges to subscriptions.

Parameters

• amount (Decimal. Precision is 2; anything more will be
ignored.) – The amount to charge.

• currency (string) – 3-letter ISO code for currency

• description (string) – An arbitrary string.

• discountable (boolean) – Controls whether discounts apply to this invoice item. De-
faults to False for prorations or negative invoice items, and True for all other invoice items.

• invoice (Invoice or string (invoice ID)) – An existing invoice to add this
invoice item to. When left blank, the invoice item will be added to the next upcoming sched-
uled invoice. Use this when adding invoice items in response to an invoice.created
webhook. You cannot add an invoice item to an invoice that has already been paid, attempted
or closed.

• metadata (dict) – A set of key/value pairs useful for storing additional information.

• subscription (Subscription or string (subscription ID)) – A sub-
scription to add this invoice item to. When left blank, the invoice item will be be added
to the next upcoming scheduled invoice. When set, scheduled invoices for subscriptions
other than the specified subscription will ignore the invoice item. Use this when you want to
express that an invoice item has been accrued within the context of a particular subscription.

Customer.add_card(source, set_default=True)
Adds a card to this customer’s account.

Parameters

42 Chapter 1. Contents

dj-stripe Documentation, Release 2.3.0

• source (string, dict) – Either a token, like the ones returned by our Stripe.js, or a
dictionary containing a user’s credit card details. Stripe will automatically validate the card.

• set_default (boolean) – Whether or not to set the source as the customer’s default
source

Customer.add_payment_method(payment_method, set_default=True)
Adds an already existing payment method to this customer’s account

Parameters

• payment_method (str, PaymentMethod) – PaymentMethod to be attached to the
customer

• set_default (bool) – If true, this will be set as the default_payment_method

Return type PaymentMethod

Customer.purge()

Customer.has_active_subscription(plan=None)
Checks to see if this customer has an active subscription to the given plan.

Parameters plan (Plan or string (plan ID)) – The plan for which to check for an ac-
tive subscription. If plan is None and there exists only one active subscription, this method
will check if that subscription is valid. Calling this method with no plan and multiple valid
subscriptions for this customer will throw an exception.

Returns True if there exists an active subscription, False otherwise.

Throws TypeError if plan is None and more than one active subscription exists for this customer.

Customer.has_any_active_subscription()
Checks to see if this customer has an active subscription to any plan.

Returns True if there exists an active subscription, False otherwise.

Customer.active_subscriptions
Returns active subscriptions (subscriptions with an active status that end in the future).

Customer.valid_subscriptions
Returns this customer’s valid subscriptions (subscriptions that aren’t canceled or incomplete_expired).

Customer.subscription
Shortcut to get this customer’s subscription.

Returns None if the customer has no subscriptions, the subscription if the customer has a subscrip-
tion.

Raises MultipleSubscriptionException – Raised if the customer has multiple subscrip-
tions. In this case, use Customer.subscriptions instead.

Customer.can_charge()
Determines if this customer is able to be charged.

Customer.send_invoice()
Pay and send the customer’s latest invoice.

Returns True if an invoice was able to be created and paid, False otherwise (typically if there was
nothing to invoice).

Customer.retry_unpaid_invoices()
Attempt to retry collecting payment on the customer’s unpaid invoices.

1.19. Models 43

dj-stripe Documentation, Release 2.3.0

Customer.has_valid_source()
Check whether the customer has a valid payment source.

Customer.add_coupon(coupon, idempotency_key=None)
Add a coupon to a Customer.

The coupon can be a Coupon object, or a valid Stripe Coupon ID.

Customer.upcoming_invoice(**kwargs)
Gets the upcoming preview invoice (singular) for this customer.

See Invoice.upcoming().

The customer argument to the upcoming() call is automatically set by this method.

Customer.str_parts()
Extend this to add information to the string representation of the object

Return type list of str

classmethod Customer.sync_from_stripe_data(data)
Syncs this object from the stripe data provided.

Foreign keys will also be retrieved and synced recursively.

Parameters data (dict) – stripe object

Return type cls

Dispute

class djstripe.models.Dispute(*args, **kwargs)
Stripe documentation: https://stripe.com/docs/api#disputes

Parameters

• djstripe_id (BigAutoField) – Id

• id (StripeIdField) – Id

• livemode (NullBooleanField) – Livemode. Null here indicates that the livemode
status is unknown or was previously unrecorded. Otherwise, this field indicates whether this
record comes from Stripe test mode or live mode operation.

• created (StripeDateTimeField) – Created. The datetime this object was created
in stripe.

• metadata (JSONField) – Metadata. A set of key/value pairs that you can attach to an
object. It can be useful for storing additional information about an object in a structured
format.

• description (TextField) – Description. A description of this object.

• djstripe_created (DateTimeField) – Djstripe created

• djstripe_updated (DateTimeField) – Djstripe updated

• amount (StripeQuantumCurrencyAmountField) – Amount. Disputed amount
(in cents). Usually the amount of the charge, but can differ (usually because of currency
fluctuation or because only part of the order is disputed).

• currency (StripeCurrencyCodeField) – Currency. Three-letter ISO currency
code

• evidence (JSONField) – Evidence. Evidence provided to respond to a dispute.

44 Chapter 1. Contents

https://stripe.com/docs/api#disputes

dj-stripe Documentation, Release 2.3.0

• evidence_details (JSONField) – Evidence details. Information about the evidence
submission.

• is_charge_refundable (BooleanField) – Is charge refundable. If true, it is still
possible to refund the disputed payment. Once the payment has been fully refunded, no
further funds will be withdrawn from your Stripe account as a result of this dispute.

• reason (StripeEnumField) – Reason

• status (StripeEnumField) – Status

classmethod Dispute.api_list(api_key=”, **kwargs)
Call the stripe API’s list operation for this model.

Parameters api_key (string) – The api key to use for this request. Defaults to
djstripe_settings.STRIPE_SECRET_KEY.

See Stripe documentation for accepted kwargs for each object.

Returns an iterator over all items in the query

Dispute.api_retrieve(api_key=None, stripe_account=None)
Call the stripe API’s retrieve operation for this model.

Parameters

• api_key (string) – The api key to use for this request. Defaults to set-
tings.STRIPE_SECRET_KEY.

• stripe_account (string) – The optional connected account for which this request is
being made.

Dispute.get_stripe_dashboard_url()
Get the stripe dashboard url for this object.

Dispute.str_parts()
Extend this to add information to the string representation of the object

Return type list of str

classmethod Dispute.sync_from_stripe_data(data)
Syncs this object from the stripe data provided.

Foreign keys will also be retrieved and synced recursively.

Parameters data (dict) – stripe object

Return type cls

Event

class djstripe.models.Event(*args, **kwargs)
Events are Stripe’s way of letting you know when something interesting happens in your account. When an
interesting event occurs, a new Event object is created and POSTed to the configured webhook URL if the Event
type matches.

Stripe documentation: https://stripe.com/docs/api/events

Parameters

• djstripe_id (BigAutoField) – Id

• id (StripeIdField) – Id

1.19. Models 45

https://stripe.com/docs/api/events

dj-stripe Documentation, Release 2.3.0

• livemode (NullBooleanField) – Livemode. Null here indicates that the livemode
status is unknown or was previously unrecorded. Otherwise, this field indicates whether this
record comes from Stripe test mode or live mode operation.

• created (StripeDateTimeField) – Created. The datetime this object was created
in stripe.

• metadata (JSONField) – Metadata. A set of key/value pairs that you can attach to an
object. It can be useful for storing additional information about an object in a structured
format.

• description (TextField) – Description. A description of this object.

• djstripe_created (DateTimeField) – Djstripe created

• djstripe_updated (DateTimeField) – Djstripe updated

• api_version (CharField) – Api version. the API version at which the event data was
rendered. Blank for old entries only, all new entries will have this value

• data (JSONField) – Data. data received at webhook. data should be considered to be
garbage until validity check is run and valid flag is set

• request_id (CharField) – Request id. Information about the request that triggered
this event, for traceability purposes. If empty string then this is an old entry without that
data. If Null then this is not an old entry, but a Stripe ‘automated’ event with no associated
request.

• idempotency_key (TextField) – Idempotency key

• type (CharField) – Type. Stripe’s event description code

classmethod Event.api_list(api_key=”, **kwargs)
Call the stripe API’s list operation for this model.

Parameters api_key (string) – The api key to use for this request. Defaults to
djstripe_settings.STRIPE_SECRET_KEY.

See Stripe documentation for accepted kwargs for each object.

Returns an iterator over all items in the query

Event.api_retrieve(api_key=None, stripe_account=None)
Call the stripe API’s retrieve operation for this model.

Parameters

• api_key (string) – The api key to use for this request. Defaults to set-
tings.STRIPE_SECRET_KEY.

• stripe_account (string) – The optional connected account for which this request is
being made.

classmethod Event.process(data)

Event.invoke_webhook_handlers()
Invokes any webhook handlers that have been registered for this event based on event type or event sub-type.

See event handlers registered in the djstripe.event_handlersmodule (or handlers registered in djstripe
plugins or contrib packages).

Event.parts
Gets the event category/verb as a list of parts.

46 Chapter 1. Contents

dj-stripe Documentation, Release 2.3.0

Event.category
Gets the event category string (e.g. ‘customer’).

Event.verb
Gets the event past-tense verb string (e.g. ‘updated’).

Event.customer

Event.str_parts()
Extend this to add information to the string representation of the object

Return type list of str

classmethod Event.sync_from_stripe_data(data)
Syncs this object from the stripe data provided.

Foreign keys will also be retrieved and synced recursively.

Parameters data (dict) – stripe object

Return type cls

File Upload

class djstripe.models.FileUpload(*args, **kwargs)
Stripe documentation: https://stripe.com/docs/api#file_uploads

Parameters

• djstripe_id (BigAutoField) – Id

• id (StripeIdField) – Id

• livemode (NullBooleanField) – Livemode. Null here indicates that the livemode
status is unknown or was previously unrecorded. Otherwise, this field indicates whether this
record comes from Stripe test mode or live mode operation.

• created (StripeDateTimeField) – Created. The datetime this object was created
in stripe.

• metadata (JSONField) – Metadata. A set of key/value pairs that you can attach to an
object. It can be useful for storing additional information about an object in a structured
format.

• description (TextField) – Description. A description of this object.

• djstripe_created (DateTimeField) – Djstripe created

• djstripe_updated (DateTimeField) – Djstripe updated

• filename (CharField) – Filename. A filename for the file, suitable for saving to a
filesystem.

• purpose (StripeEnumField) – Purpose. The purpose of the uploaded file.

• size (IntegerField) – Size. The size in bytes of the file upload object.

• type (StripeEnumField) – Type. The type of the file returned.

• url (CharField) – Url. A read-only URL where the uploaded file can be accessed.

classmethod FileUpload.api_list(api_key=”, **kwargs)
Call the stripe API’s list operation for this model.

1.19. Models 47

https://stripe.com/docs/api#file_uploads

dj-stripe Documentation, Release 2.3.0

Parameters api_key (string) – The api key to use for this request. Defaults to
djstripe_settings.STRIPE_SECRET_KEY.

See Stripe documentation for accepted kwargs for each object.

Returns an iterator over all items in the query

FileUpload.api_retrieve(api_key=None, stripe_account=None)
Call the stripe API’s retrieve operation for this model.

Parameters

• api_key (string) – The api key to use for this request. Defaults to set-
tings.STRIPE_SECRET_KEY.

• stripe_account (string) – The optional connected account for which this request is
being made.

classmethod FileUpload.sync_from_stripe_data(data)
Syncs this object from the stripe data provided.

Foreign keys will also be retrieved and synced recursively.

Parameters data (dict) – stripe object

Return type cls

Payout

class djstripe.models.Payout(*args, **kwargs)
A Payout object is created when you receive funds from Stripe, or when you initiate a payout to either a bank
account or debit card of a connected Stripe account.

Stripe documentation: https://stripe.com/docs/api#payouts

Parameters

• djstripe_id (BigAutoField) – Id

• id (StripeIdField) – Id

• livemode (NullBooleanField) – Livemode. Null here indicates that the livemode
status is unknown or was previously unrecorded. Otherwise, this field indicates whether this
record comes from Stripe test mode or live mode operation.

• created (StripeDateTimeField) – Created. The datetime this object was created
in stripe.

• metadata (JSONField) – Metadata. A set of key/value pairs that you can attach to an
object. It can be useful for storing additional information about an object in a structured
format.

• description (TextField) – Description. A description of this object.

• djstripe_created (DateTimeField) – Djstripe created

• djstripe_updated (DateTimeField) – Djstripe updated

• amount (StripeDecimalCurrencyAmountField) – Amount. Amount (as deci-
mal) to be transferred to your bank account or debit card.

• arrival_date (StripeDateTimeField) – Arrival date. Date the payout is expected
to arrive in the bank. This factors in delays like weekends or bank holidays.

48 Chapter 1. Contents

https://stripe.com/docs/api#payouts

dj-stripe Documentation, Release 2.3.0

• balance_transaction (ForeignKey to BalanceTransaction) – Balance transac-
tion. Balance transaction that describes the impact on your account balance.

• currency (StripeCurrencyCodeField) – Currency. Three-letter ISO currency
code

• destination (ForeignKey to BankAccount) – Destination. Bank account or card the
payout was sent to.

• failure_balance_transaction (ForeignKey to BalanceTransaction) – Fail-
ure balance transaction. If the payout failed or was canceled, this will be the balance trans-
action that reversed the initial balance transaction, and puts the funds from the failed payout
back in your balance.

• failure_code (StripeEnumField) – Failure code. Error code explaining reason for
transfer failure if available. See https://stripe.com/docs/api/python#transfer_failures.

• failure_message (TextField) – Failure message. Message to user further explain-
ing reason for payout failure if available.

• method (StripeEnumField) – Method. The method used to send this payout. instant
is only supported for payouts to debit cards.

• statement_descriptor (CharField) – Statement descriptor. Extra information
about a payout to be displayed on the user’s bank statement.

• status (StripeEnumField) – Status. Current status of the payout. A payout will be
pending until it is submitted to the bank, at which point it becomes in_transit. It will then
change to paid if the transaction goes through. If it does not go through successfully, its
status will change to failed or canceled.

• type (StripeEnumField) – Type

classmethod Payout.api_list(api_key=”, **kwargs)
Call the stripe API’s list operation for this model.

Parameters api_key (string) – The api key to use for this request. Defaults to
djstripe_settings.STRIPE_SECRET_KEY.

See Stripe documentation for accepted kwargs for each object.

Returns an iterator over all items in the query

Payout.api_retrieve(api_key=None, stripe_account=None)
Call the stripe API’s retrieve operation for this model.

Parameters

• api_key (string) – The api key to use for this request. Defaults to set-
tings.STRIPE_SECRET_KEY.

• stripe_account (string) – The optional connected account for which this request is
being made.

Payout.get_stripe_dashboard_url()
Get the stripe dashboard url for this object.

Payout.str_parts()
Extend this to add information to the string representation of the object

Return type list of str

classmethod Payout.sync_from_stripe_data(data)
Syncs this object from the stripe data provided.

1.19. Models 49

https://stripe.com/docs/api/python#transfer_failures

dj-stripe Documentation, Release 2.3.0

Foreign keys will also be retrieved and synced recursively.

Parameters data (dict) – stripe object

Return type cls

PaymentIntent

class djstripe.models.PaymentIntent(*args, **kwargs)
Stripe documentation: https://stripe.com/docs/api#payment_intents

Parameters

• djstripe_id (BigAutoField) – Id

• id (StripeIdField) – Id

• livemode (NullBooleanField) – Livemode. Null here indicates that the livemode
status is unknown or was previously unrecorded. Otherwise, this field indicates whether this
record comes from Stripe test mode or live mode operation.

• created (StripeDateTimeField) – Created. The datetime this object was created
in stripe.

• metadata (JSONField) – Metadata. A set of key/value pairs that you can attach to an
object. It can be useful for storing additional information about an object in a structured
format.

• djstripe_created (DateTimeField) – Djstripe created

• djstripe_updated (DateTimeField) – Djstripe updated

• amount (StripeQuantumCurrencyAmountField) – Amount. Amount (in cents)
intended to be collected by this PaymentIntent.

• amount_capturable (StripeQuantumCurrencyAmountField) – Amount cap-
turable. Amount (in cents) that can be captured from this PaymentIntent.

• amount_received (StripeQuantumCurrencyAmountField) – Amount re-
ceived. Amount (in cents) that was collected by this PaymentIntent.

• canceled_at (StripeDateTimeField) – Canceled at. Populated when status is
canceled, this is the time at which the PaymentIntent was canceled. Measured in seconds
since the Unix epoch.

• cancellation_reason (StripeEnumField) – Cancellation reason. Reason
for cancellation of this PaymentIntent, either user-provided (duplicate, fraudulent, re-
quested_by_customer, or abandoned) or generated by Stripe internally (failed_invoice,
void_invoice, or automatic).

• capture_method (StripeEnumField) – Capture method. Capture method of this
PaymentIntent, one of automatic or manual.

• client_secret (TextField) – Client secret. The client secret of this PaymentIntent.
Used for client-side retrieval using a publishable key.

• confirmation_method (StripeEnumField) – Confirmation method. Confirma-
tion method of this PaymentIntent, one of manual or automatic.

• currency (StripeCurrencyCodeField) – Currency. Three-letter ISO currency
code

50 Chapter 1. Contents

https://stripe.com/docs/api#payment_intents

dj-stripe Documentation, Release 2.3.0

• customer (ForeignKey to Customer) – Customer. Customer this PaymentIntent is for
if one exists.

• description (TextField) – Description. An arbitrary string attached to the object.
Often useful for displaying to users.

• last_payment_error (JSONField) – Last payment error. The payment error en-
countered in the previous PaymentIntent confirmation.

• next_action (JSONField) – Next action. If present, this property tells you what ac-
tions you need to take in order for your customer to fulfill a payment using the provided
source.

• on_behalf_of (ForeignKey to Account) – On behalf of. The account (if any) for which
the funds of the PaymentIntent are intended.

• payment_method (ForeignKey to PaymentMethod) – Payment method. Payment
method used in this PaymentIntent.

• payment_method_types (JSONField) – Payment method types. The list of payment
method types (e.g. card) that this PaymentIntent is allowed to use.

• receipt_email (CharField) – Receipt email. Email address that the receipt for the
resulting payment will be sent to.

• setup_future_usage (StripeEnumField) – Setup future usage. Indicates that you
intend to make future payments with this PaymentIntent’s payment method. If present, the
payment method used with this PaymentIntent can be attached to a Customer, even after
the transaction completes. Use on_session if you intend to only reuse the payment method
when your customer is present in your checkout flow. Use off_session if your customer
may or may not be in your checkout flow. Stripe uses setup_future_usage to dynamically
optimize your payment flow and comply with regional legislation and network rules. For
example, if your customer is impacted by SCA, using off_session will ensure that they are
authenticated while processing this PaymentIntent. You will then be able to make later
off-session payments for this customer.

• shipping (JSONField) – Shipping. Shipping information for this PaymentIntent.

• statement_descriptor (CharField) – Statement descriptor. For non-card charges,
you can use this value as the complete description that appears on your customers’ state-
ments. Must contain at least one letter, maximum 22 characters.

• status (StripeEnumField) – Status. Status of this PaymentIntent, one
of requires_payment_method, requires_confirmation, requires_action, processing, re-
quires_capture, canceled, or succeeded. You can read more about PaymentIntent statuses
here.

• transfer_data (JSONField) – Transfer data. The data with which to automatically
create a Transfer when the payment is finalized. See the PaymentIntents Connect usage
guide for details.

• transfer_group (CharField) – Transfer group. A string that identifies the resulting
payment as part of a group. See the PaymentIntents Connect usage guide for details.

classmethod PaymentIntent.api_list(api_key=”, **kwargs)
Call the stripe API’s list operation for this model.

Parameters api_key (string) – The api key to use for this request. Defaults to
djstripe_settings.STRIPE_SECRET_KEY.

See Stripe documentation for accepted kwargs for each object.

1.19. Models 51

dj-stripe Documentation, Release 2.3.0

Returns an iterator over all items in the query

PaymentIntent.api_retrieve(api_key=None, stripe_account=None)
Call the stripe API’s retrieve operation for this model.

Parameters

• api_key (string) – The api key to use for this request. Defaults to set-
tings.STRIPE_SECRET_KEY.

• stripe_account (string) – The optional connected account for which this request is
being made.

PaymentIntent.get_stripe_dashboard_url()
Get the stripe dashboard url for this object.

PaymentIntent.str_parts()
Extend this to add information to the string representation of the object

Return type list of str

classmethod PaymentIntent.sync_from_stripe_data(data)
Syncs this object from the stripe data provided.

Foreign keys will also be retrieved and synced recursively.

Parameters data (dict) – stripe object

Return type cls

Product

class djstripe.models.Product(*args, **kwargs)
Stripe documentation: - https://stripe.com/docs/api#products - https://stripe.com/docs/api#service_products

Parameters

• djstripe_id (BigAutoField) – Id

• id (StripeIdField) – Id

• livemode (NullBooleanField) – Livemode. Null here indicates that the livemode
status is unknown or was previously unrecorded. Otherwise, this field indicates whether this
record comes from Stripe test mode or live mode operation.

• created (StripeDateTimeField) – Created. The datetime this object was created
in stripe.

• metadata (JSONField) – Metadata. A set of key/value pairs that you can attach to an
object. It can be useful for storing additional information about an object in a structured
format.

• description (TextField) – Description. A description of this object.

• djstripe_created (DateTimeField) – Djstripe created

• djstripe_updated (DateTimeField) – Djstripe updated

• name (TextField) – Name. The product’s name, meant to be displayable to the customer.
Applicable to both service and good types.

• type (StripeEnumField) – Type. The type of the product. The product is either of
type good, which is eligible for use with Orders and SKUs, or service, which is eligible for
use with Subscriptions and Plans.

52 Chapter 1. Contents

https://stripe.com/docs/api#products
https://stripe.com/docs/api#service_products

dj-stripe Documentation, Release 2.3.0

• active (NullBooleanField) – Active. Whether the product is currently available for
purchase. Only applicable to products of type=good.

• attributes (JSONField) – Attributes. A list of up to 5 attributes that each SKU can
provide values for (e.g., [“color”, “size”]). Only applicable to products of type=good.

• caption (TextField) – Caption. A short one-line description of the product, meant to
be displayableto the customer. Only applicable to products of type=good.

• deactivate_on (JSONField) – Deactivate on. An array of connect application iden-
tifiers that cannot purchase this product. Only applicable to products of type=good.

• images (JSONField) – Images. A list of up to 8 URLs of images for this product, meant
to be displayable to the customer. Only applicable to products of type=good.

• package_dimensions (JSONField) – Package dimensions. The dimensions of this
product for shipping purposes. A SKU associated with this product can override this value
by having its own package_dimensions. Only applicable to products of type=good.

• shippable (NullBooleanField) – Shippable. Whether this product is a shipped
good. Only applicable to products of type=good.

• url (CharField) – Url. A URL of a publicly-accessible webpage for this product. Only
applicable to products of type=good.

• statement_descriptor (CharField) – Statement descriptor. Extra information
about a product which will appear on your customer’s credit card statement. In the case
that multiple products are billed at once, the first statement descriptor will be used. Only
available on products of type=‘service‘.

• unit_label (CharField) – Unit label

classmethod Product.api_list(api_key=”, **kwargs)
Call the stripe API’s list operation for this model.

Parameters api_key (string) – The api key to use for this request. Defaults to
djstripe_settings.STRIPE_SECRET_KEY.

See Stripe documentation for accepted kwargs for each object.

Returns an iterator over all items in the query

Product.api_retrieve(api_key=None, stripe_account=None)
Call the stripe API’s retrieve operation for this model.

Parameters

• api_key (string) – The api key to use for this request. Defaults to set-
tings.STRIPE_SECRET_KEY.

• stripe_account (string) – The optional connected account for which this request is
being made.

Product.get_stripe_dashboard_url()
Get the stripe dashboard url for this object.

classmethod Product.sync_from_stripe_data(data)
Syncs this object from the stripe data provided.

Foreign keys will also be retrieved and synced recursively.

Parameters data (dict) – stripe object

Return type cls

1.19. Models 53

dj-stripe Documentation, Release 2.3.0

Refund

class djstripe.models.Refund(*args, **kwargs)
Stripe documentation: https://stripe.com/docs/api#refund_object

Parameters

• djstripe_id (BigAutoField) – Id

• id (StripeIdField) – Id

• livemode (NullBooleanField) – Livemode. Null here indicates that the livemode
status is unknown or was previously unrecorded. Otherwise, this field indicates whether this
record comes from Stripe test mode or live mode operation.

• created (StripeDateTimeField) – Created. The datetime this object was created
in stripe.

• metadata (JSONField) – Metadata. A set of key/value pairs that you can attach to an
object. It can be useful for storing additional information about an object in a structured
format.

• description (TextField) – Description. A description of this object.

• djstripe_created (DateTimeField) – Djstripe created

• djstripe_updated (DateTimeField) – Djstripe updated

• amount (StripeQuantumCurrencyAmountField) – Amount. Amount, in cents.

• balance_transaction (ForeignKey to BalanceTransaction) – Balance transac-
tion. Balance transaction that describes the impact on your account balance.

• charge (ForeignKey to Charge) – Charge. The charge that was refunded

• currency (StripeCurrencyCodeField) – Currency. Three-letter ISO currency
code

• failure_balance_transaction (ForeignKey to BalanceTransaction) – Fail-
ure balance transaction. If the refund failed, this balance transaction describes the adjust-
ment made on your account balance that reverses the initial balance transaction.

• failure_reason (StripeEnumField) – Failure reason. If the refund failed, the
reason for refund failure if known.

• reason (StripeEnumField) – Reason. Reason for the refund.

• receipt_number (CharField) – Receipt number. The transaction number that ap-
pears on email receipts sent for this charge.

• status (StripeEnumField) – Status. Status of the refund.

classmethod Refund.api_list(api_key=”, **kwargs)
Call the stripe API’s list operation for this model.

Parameters api_key (string) – The api key to use for this request. Defaults to
djstripe_settings.STRIPE_SECRET_KEY.

See Stripe documentation for accepted kwargs for each object.

Returns an iterator over all items in the query

Refund.api_retrieve(api_key=None, stripe_account=None)
Call the stripe API’s retrieve operation for this model.

Parameters

54 Chapter 1. Contents

https://stripe.com/docs/api#refund_object

dj-stripe Documentation, Release 2.3.0

• api_key (string) – The api key to use for this request. Defaults to set-
tings.STRIPE_SECRET_KEY.

• stripe_account (string) – The optional connected account for which this request is
being made.

Refund.get_stripe_dashboard_url()
Get the stripe dashboard url for this object.

classmethod Refund.sync_from_stripe_data(data)
Syncs this object from the stripe data provided.

Foreign keys will also be retrieved and synced recursively.

Parameters data (dict) – stripe object

Return type cls

1.19.2 Payment Methods

BankAccount

class djstripe.models.BankAccount(djstripe_id, id, livemode, created, metadata, descrip-
tion, djstripe_created, djstripe_updated, account, ac-
count_holder_name, account_holder_type, bank_name,
country, currency, customer, default_for_currency, finger-
print, last4, routing_number, status)

Parameters

• djstripe_id (BigAutoField) – Id

• id (StripeIdField) – Id

• livemode (NullBooleanField) – Livemode. Null here indicates that the livemode
status is unknown or was previously unrecorded. Otherwise, this field indicates whether this
record comes from Stripe test mode or live mode operation.

• created (StripeDateTimeField) – Created. The datetime this object was created
in stripe.

• metadata (JSONField) – Metadata. A set of key/value pairs that you can attach to an
object. It can be useful for storing additional information about an object in a structured
format.

• description (TextField) – Description. A description of this object.

• djstripe_created (DateTimeField) – Djstripe created

• djstripe_updated (DateTimeField) – Djstripe updated

• account (ForeignKey to Account) – Account. The account the charge was made on
behalf of. Null here indicates that this value was never set.

• account_holder_name (TextField) – Account holder name. The name of the per-
son or business that owns the bank account.

• account_holder_type (StripeEnumField) – Account holder type. The type of
entity that holds the account.

• bank_name (CharField) – Bank name. Name of the bank associated with the routing
number (e.g., WELLS FARGO).

1.19. Models 55

dj-stripe Documentation, Release 2.3.0

• country (CharField) – Country. Two-letter ISO code representing the country the
bank account is located in.

• currency (StripeCurrencyCodeField) – Currency. Three-letter ISO currency
code

• customer (ForeignKey to Customer) – Customer

• default_for_currency (NullBooleanField) – Default for currency. Whether
this external account is the default account for its currency.

• fingerprint (CharField) – Fingerprint. Uniquely identifies this particular bank ac-
count. You can use this attribute to check whether two bank accounts are the same.

• last4 (CharField) – Last4

• routing_number (CharField) – Routing number. The routing transit number for the
bank account.

• status (StripeEnumField) – Status

classmethod BankAccount.api_list(api_key=”, **kwargs)
Call the stripe API’s list operation for this model.

Parameters api_key (string) – The api key to use for this request. Defaults to
djstripe_settings.STRIPE_SECRET_KEY.

See Stripe documentation for accepted kwargs for each object.

Returns an iterator over all items in the query

BankAccount.api_retrieve(api_key=None, stripe_account=None)

BankAccount.get_stripe_dashboard_url()

BankAccount.str_parts()
Extend this to add information to the string representation of the object

Return type list of str

classmethod BankAccount.sync_from_stripe_data(data)
Syncs this object from the stripe data provided.

Foreign keys will also be retrieved and synced recursively.

Parameters data (dict) – stripe object

Return type cls

Card

class djstripe.models.Card(*args, **kwargs)
You can store multiple cards on a customer in order to charge the customer later.

This is a legacy model which only applies to the “v2” Stripe API (eg. Checkout.js). You should strive to use
the Stripe “v3” API (eg. Stripe Elements). Also see: https://stripe.com/docs/stripe-js/elements/migrating When
using Elements, you will not be using Card objects. Instead, you will use Source objects. A Source object of
type “card” is equivalent to a Card object. However, Card objects cannot be converted into Source objects by
Stripe at this time.

Stripe documentation: https://stripe.com/docs/api/python#cards

Parameters

• djstripe_id (BigAutoField) – Id

56 Chapter 1. Contents

https://stripe.com/docs/stripe-js/elements/migrating
https://stripe.com/docs/api/python#cards

dj-stripe Documentation, Release 2.3.0

• id (StripeIdField) – Id

• livemode (NullBooleanField) – Livemode. Null here indicates that the livemode
status is unknown or was previously unrecorded. Otherwise, this field indicates whether this
record comes from Stripe test mode or live mode operation.

• created (StripeDateTimeField) – Created. The datetime this object was created
in stripe.

• metadata (JSONField) – Metadata. A set of key/value pairs that you can attach to an
object. It can be useful for storing additional information about an object in a structured
format.

• description (TextField) – Description. A description of this object.

• djstripe_created (DateTimeField) – Djstripe created

• djstripe_updated (DateTimeField) – Djstripe updated

• address_city (TextField) – Address city. City/District/Suburb/Town/Village.

• address_country (TextField) – Address country. Billing address country.

• address_line1 (TextField) – Address line1. Street address/PO Box/Company
name.

• address_line1_check (StripeEnumField) – Address line1 check. If ad-
dress_line1 was provided, results of the check.

• address_line2 (TextField) – Address line2. Apartment/Suite/Unit/Building.

• address_state (TextField) – Address state. State/County/Province/Region.

• address_zip (TextField) – Address zip. ZIP or postal code.

• address_zip_check (StripeEnumField) – Address zip check. If address_zip was
provided, results of the check.

• brand (StripeEnumField) – Brand. Card brand.

• country (CharField) – Country. Two-letter ISO code representing the country of the
card.

• customer (ForeignKey to Customer) – Customer

• cvc_check (StripeEnumField) – Cvc check. If a CVC was provided, results of the
check.

• dynamic_last4 (CharField) – Dynamic last4. (For tokenized numbers only.) The
last four digits of the device account number.

• exp_month (IntegerField) – Exp month. Card expiration month.

• exp_year (IntegerField) – Exp year. Card expiration year.

• fingerprint (CharField) – Fingerprint. Uniquely identifies this particular card num-
ber.

• funding (StripeEnumField) – Funding. Card funding type.

• last4 (CharField) – Last4. Last four digits of Card number.

• name (TextField) – Name. Cardholder name.

• tokenization_method (StripeEnumField) – Tokenization method. If the card
number is tokenized, this is the method that was used.

1.19. Models 57

dj-stripe Documentation, Release 2.3.0

classmethod Card.api_list(api_key=”, **kwargs)
Call the stripe API’s list operation for this model.

Parameters api_key (string) – The api key to use for this request. Defaults to
djstripe_settings.STRIPE_SECRET_KEY.

See Stripe documentation for accepted kwargs for each object.

Returns an iterator over all items in the query

Card.api_retrieve(api_key=None, stripe_account=None)

Card.get_stripe_dashboard_url()

Card.remove()
Removes a legacy source from this customer’s account.

classmethod Card.create_token(number, exp_month, exp_year, cvc, api_key=”, **kwargs)
Creates a single use token that wraps the details of a credit card. This token can be used in place of a credit
card dictionary with any API method. These tokens can only be used once: by creating a new charge object, or
attaching them to a customer. (Source: https://stripe.com/docs/api/python#create_card_token)

Parameters

• number (str) – The card number without any separators (no spaces)

• exp_month (int) – The card’s expiration month. (two digits)

• exp_year (int) – The card’s expiration year. (four digits)

• cvc (str) – Card security code.

• api_key (str) –

Return type stripe.Token

Card.str_parts()
Extend this to add information to the string representation of the object

Return type list of str

classmethod Card.sync_from_stripe_data(data)
Syncs this object from the stripe data provided.

Foreign keys will also be retrieved and synced recursively.

Parameters data (dict) – stripe object

Return type cls

PaymentMethod

class djstripe.models.PaymentMethod(*args, **kwargs)
Stripe documentation: https://stripe.com/docs/api#payment_methods

Parameters

• djstripe_id (BigAutoField) – Id

• id (StripeIdField) – Id

• livemode (NullBooleanField) – Livemode. Null here indicates that the livemode
status is unknown or was previously unrecorded. Otherwise, this field indicates whether this
record comes from Stripe test mode or live mode operation.

58 Chapter 1. Contents

https://stripe.com/docs/api/python#create_card_token
https://stripe.com/docs/api#payment_methods

dj-stripe Documentation, Release 2.3.0

• created (StripeDateTimeField) – Created. The datetime this object was created
in stripe.

• metadata (JSONField) – Metadata. A set of key/value pairs that you can attach to an
object. It can be useful for storing additional information about an object in a structured
format.

• description (TextField) – Description. A description of this object.

• djstripe_created (DateTimeField) – Djstripe created

• djstripe_updated (DateTimeField) – Djstripe updated

• billing_details (JSONField) – Billing details. Billing information associated with
the PaymentMethod that may be used or required by particular types of payment methods.

• card (JSONField) – Card. If this is a card PaymentMethod, this hash contains details
about the card.

• card_present (JSONField) – Card present. If this is an card_present Payment-
Method, this hash contains details about the Card Present payment method.

• customer (ForeignKey to Customer) – Customer. Customer to which this Payment-
Method is saved.This will not be set when the PaymentMethod has not been saved to a
Customer.

• type (CharField) – Type. The type of the PaymentMethod. An additional hash is
included on the PaymentMethod with a name matching this value. It contains additional
information specific to the PaymentMethod type.

classmethod PaymentMethod.api_list(api_key=”, **kwargs)
Call the stripe API’s list operation for this model.

Parameters api_key (string) – The api key to use for this request. Defaults to
djstripe_settings.STRIPE_SECRET_KEY.

See Stripe documentation for accepted kwargs for each object.

Returns an iterator over all items in the query

PaymentMethod.api_retrieve(api_key=None, stripe_account=None)
Call the stripe API’s retrieve operation for this model.

Parameters

• api_key (string) – The api key to use for this request. Defaults to set-
tings.STRIPE_SECRET_KEY.

• stripe_account (string) – The optional connected account for which this request is
being made.

PaymentMethod.get_stripe_dashboard_url()
Get the stripe dashboard url for this object.

classmethod PaymentMethod.attach(payment_method, customer, api_key=”)
Attach a payment method to a customer :param payment_method: :type payment_method: str, PaymentMethod
:param customer: :type customer: Union[str, Customer] :param api_key: :type api_key: str :return: :rtype:
PaymentMethod

PaymentMethod.detach()
Detach the payment method from its customer.

Returns Returns true if the payment method was newly detached, false if it was already detached

Return type bool

1.19. Models 59

dj-stripe Documentation, Release 2.3.0

PaymentMethod.str_parts()
Extend this to add information to the string representation of the object

Return type list of str

classmethod PaymentMethod.sync_from_stripe_data(data)
Syncs this object from the stripe data provided.

Foreign keys will also be retrieved and synced recursively.

Parameters data (dict) – stripe object

Return type cls

Source

class djstripe.models.Source(*args, **kwargs)
Stripe documentation: https://stripe.com/docs/api#sources

Parameters

• djstripe_id (BigAutoField) – Id

• id (StripeIdField) – Id

• livemode (NullBooleanField) – Livemode. Null here indicates that the livemode
status is unknown or was previously unrecorded. Otherwise, this field indicates whether this
record comes from Stripe test mode or live mode operation.

• created (StripeDateTimeField) – Created. The datetime this object was created
in stripe.

• metadata (JSONField) – Metadata. A set of key/value pairs that you can attach to an
object. It can be useful for storing additional information about an object in a structured
format.

• description (TextField) – Description. A description of this object.

• djstripe_created (DateTimeField) – Djstripe created

• djstripe_updated (DateTimeField) – Djstripe updated

• amount (StripeDecimalCurrencyAmountField) – Amount. Amount (as deci-
mal) associated with the source. This is the amount for which the source will be chargeable
once ready. Required for single_use sources.

• client_secret (CharField) – Client secret. The client secret of the source. Used for
client-side retrieval using a publishable key.

• currency (StripeCurrencyCodeField) – Currency. Three-letter ISO currency
code

• flow (StripeEnumField) – Flow. The authentication flow of the source.

• owner (JSONField) – Owner. Information about the owner of the payment instrument
that may be used or required by particular source types.

• statement_descriptor (CharField) – Statement descriptor. Extra information
about a source. This will appear on your customer’s statement every time you charge the
source.

• status (StripeEnumField) – Status. The status of the source. Only chargeable
sources can be used to create a charge.

60 Chapter 1. Contents

https://stripe.com/docs/api#sources

dj-stripe Documentation, Release 2.3.0

• type (StripeEnumField) – Type. The type of the source.

• usage (StripeEnumField) – Usage. Whether this source should be reusable or not.
Some source types may or may not be reusable by construction, while other may leave the
option at creation.

• code_verification (JSONField) – Code verification. Information related to the
code verification flow. Present if the source is authenticated by a verification code (flow is
code_verification).

• receiver (JSONField) – Receiver. Information related to the receiver flow. Present if
the source is a receiver (flow is receiver).

• redirect (JSONField) – Redirect. Information related to the redirect flow. Present if
the source is authenticated by a redirect (flow is redirect).

• source_data (JSONField) – Source data. The data corresponding to the source type.

• customer (ForeignKey to Customer) – Customer

classmethod Source.api_list(api_key=”, **kwargs)
Call the stripe API’s list operation for this model.

Parameters api_key (string) – The api key to use for this request. Defaults to
djstripe_settings.STRIPE_SECRET_KEY.

See Stripe documentation for accepted kwargs for each object.

Returns an iterator over all items in the query

Source.api_retrieve(api_key=None, stripe_account=None)
Call the stripe API’s retrieve operation for this model.

Parameters

• api_key (string) – The api key to use for this request. Defaults to set-
tings.STRIPE_SECRET_KEY.

• stripe_account (string) – The optional connected account for which this request is
being made.

Source.get_stripe_dashboard_url()
Get the stripe dashboard url for this object.

Source.detach()
Detach the source from its customer.

Returns

Return type bool

Source.str_parts()
Extend this to add information to the string representation of the object

Return type list of str

classmethod Source.sync_from_stripe_data(data)
Syncs this object from the stripe data provided.

Foreign keys will also be retrieved and synced recursively.

Parameters data (dict) – stripe object

Return type cls

1.19. Models 61

dj-stripe Documentation, Release 2.3.0

1.19.3 Billing

Coupon

class djstripe.models.Coupon(djstripe_id, livemode, created, metadata, description,
djstripe_created, djstripe_updated, id, amount_off, currency,
duration, duration_in_months, max_redemptions, name, per-
cent_off, redeem_by, times_redeemed)

Parameters

• djstripe_id (BigAutoField) – Id

• livemode (NullBooleanField) – Livemode. Null here indicates that the livemode
status is unknown or was previously unrecorded. Otherwise, this field indicates whether this
record comes from Stripe test mode or live mode operation.

• created (StripeDateTimeField) – Created. The datetime this object was created
in stripe.

• metadata (JSONField) – Metadata. A set of key/value pairs that you can attach to an
object. It can be useful for storing additional information about an object in a structured
format.

• description (TextField) – Description. A description of this object.

• djstripe_created (DateTimeField) – Djstripe created

• djstripe_updated (DateTimeField) – Djstripe updated

• id (StripeIdField) – Id

• amount_off (StripeDecimalCurrencyAmountField) – Amount off. Amount
(as decimal) that will be taken off the subtotal of any invoices for this customer.

• currency (StripeCurrencyCodeField) – Currency. Three-letter ISO currency
code

• duration (StripeEnumField) – Duration. Describes how long a customer who ap-
plies this coupon will get the discount.

• duration_in_months (PositiveIntegerField) – Duration in months. If dura-
tion is repeating, the number of months the coupon applies.

• max_redemptions (PositiveIntegerField) – Max redemptions. Maximum
number of times this coupon can be redeemed, in total, before it is no longer valid.

• name (TextField) – Name. Name of the coupon displayed to customers on for instance
invoices or receipts.

• percent_off (StripePercentField) – Percent off. Percent that will be taken off
the subtotal of any invoices for this customer for the duration of the coupon. For example, a
coupon with percent_off of 50 will make a $100 invoice $50 instead.

• redeem_by (StripeDateTimeField) – Redeem by. Date after which the coupon can
no longer be redeemed. Max 5 years in the future.

• times_redeemed (PositiveIntegerField) – Times redeemed. Number of times
this coupon has been applied to a customer.

classmethod Coupon.api_list(api_key=”, **kwargs)
Call the stripe API’s list operation for this model.

62 Chapter 1. Contents

dj-stripe Documentation, Release 2.3.0

Parameters api_key (string) – The api key to use for this request. Defaults to
djstripe_settings.STRIPE_SECRET_KEY.

See Stripe documentation for accepted kwargs for each object.

Returns an iterator over all items in the query

Coupon.api_retrieve(api_key=None, stripe_account=None)
Call the stripe API’s retrieve operation for this model.

Parameters

• api_key (string) – The api key to use for this request. Defaults to set-
tings.STRIPE_SECRET_KEY.

• stripe_account (string) – The optional connected account for which this request is
being made.

Coupon.get_stripe_dashboard_url()
Get the stripe dashboard url for this object.

Coupon.human_readable_amount

Coupon.human_readable

Coupon.str_parts()
Extend this to add information to the string representation of the object

Return type list of str

classmethod Coupon.sync_from_stripe_data(data)
Syncs this object from the stripe data provided.

Foreign keys will also be retrieved and synced recursively.

Parameters data (dict) – stripe object

Return type cls

Invoice

class djstripe.models.Invoice(*args, **kwargs)
Invoices are statements of what a customer owes for a particular billing period, including subscriptions, invoice
items, and any automatic proration adjustments if necessary.

Once an invoice is created, payment is automatically attempted. Note that the payment, while automatic, does
not happen exactly at the time of invoice creation. If you have configured webhooks, the invoice will wait until
one hour after the last webhook is successfully sent (or the last webhook times out after failing).

Any customer credit on the account is applied before determining how much is due for that invoice (the amount
that will be actually charged). If the amount due for the invoice is less than 50 cents (the minimum for a charge),
we add the amount to the customer’s running account balance to be added to the next invoice. If this amount is
negative, it will act as a credit to offset the next invoice. Note that the customer account balance does not include
unpaid invoices; it only includes balances that need to be taken into account when calculating the amount due
for the next invoice.

Stripe documentation: https://stripe.com/docs/api/python#invoices

Parameters

• djstripe_id (BigAutoField) – Id

• id (StripeIdField) – Id

1.19. Models 63

https://stripe.com/docs/api/python#invoices

dj-stripe Documentation, Release 2.3.0

• livemode (NullBooleanField) – Livemode. Null here indicates that the livemode
status is unknown or was previously unrecorded. Otherwise, this field indicates whether this
record comes from Stripe test mode or live mode operation.

• created (StripeDateTimeField) – Created. The datetime this object was created
in stripe.

• metadata (JSONField) – Metadata. A set of key/value pairs that you can attach to an
object. It can be useful for storing additional information about an object in a structured
format.

• description (TextField) – Description. A description of this object.

• djstripe_created (DateTimeField) – Djstripe created

• djstripe_updated (DateTimeField) – Djstripe updated

• account_country (CharField) – Account country. The country of the business as-
sociated with this invoice, most often the business creating the invoice.

• account_name (TextField) – Account name. The public name of the business asso-
ciated with this invoice, most often the business creating the invoice.

• amount_due (StripeDecimalCurrencyAmountField) – Amount due. Final
amount due (as decimal) at this time for this invoice. If the invoice’s total is smaller than
the minimum charge amount, for example, or if there is account credit that can be applied to
the invoice, the amount_due may be 0. If there is a positive starting_balance for the invoice
(the customer owes money), the amount_due will also take that into account. The charge
that gets generated for the invoice will be for the amount specified in amount_due.

• amount_paid (StripeDecimalCurrencyAmountField) – Amount paid. The
amount, (as decimal), that was paid.

• amount_remaining (StripeDecimalCurrencyAmountField) – Amount re-
maining. The amount remaining, (as decimal), that is due.

• application_fee_amount (StripeDecimalCurrencyAmountField) – Ap-
plication fee amount. The fee (as decimal) that will be applied to the invoice and transferred
to the application owner’s Stripe account when the invoice is paid.

• attempt_count (IntegerField) – Attempt count. Number of payment attempts
made for this invoice, from the perspective of the payment retry schedule. Any payment
attempt counts as the first attempt, and subsequently only automatic retries increment the
attempt count. In other words, manual payment attempts after the first attempt do not affect
the retry schedule.

• attempted (BooleanField) – Attempted. Whether or not an attempt has been made
to pay the invoice. An invoice is not attempted until 1 hour after the invoice.created
webhook, for example, so you might not want to display that invoice as unpaid to your users.

• auto_advance (NullBooleanField) – Auto advance. Controls whether Stripe will
perform automatic collection of the invoice. When false, the invoice’s state will not auto-
matically advance without an explicit action.

• billing_reason (StripeEnumField) – Billing reason. Indicates the reason why
the invoice was created. subscription_cycle indicates an invoice created by a subscription
advancing into a new period. subscription_create indicates an invoice created due to creating
a subscription. subscription_update indicates an invoice created due to updating a subscrip-
tion. subscription is set for all old invoices to indicate either a change to a subscription or a
period advancement. manual is set for all invoices unrelated to a subscription (for example:
created via the invoice editor). The upcoming value is reserved for simulated invoices per

64 Chapter 1. Contents

dj-stripe Documentation, Release 2.3.0

the upcoming invoice endpoint. subscription_threshold indicates an invoice created due to
a billing threshold being reached.

• charge (OneToOneField to Charge) – Charge. The latest charge generated for this in-
voice, if any.

• collection_method (StripeEnumField) – Collection method. When charging au-
tomatically, Stripe will attempt to pay this invoice using the default source attached to the
customer. When sending an invoice, Stripe will email this invoice to the customer with
payment instructions.

• currency (StripeCurrencyCodeField) – Currency. Three-letter ISO currency
code

• customer (ForeignKey to Customer) – Customer. The customer associated with this
invoice.

• customer_address (JSONField) – Customer address. The customer’s address. Until
the invoice is finalized, this field will equal customer.address. Once the invoice is finalized,
this field will no longer be updated.

• customer_email (TextField) – Customer email. The customer’s email. Until the
invoice is finalized, this field will equal customer.email. Once the invoice is finalized, this
field will no longer be updated.

• customer_name (TextField) – Customer name. The customer’s name. Until the
invoice is finalized, this field will equal customer.name. Once the invoice is finalized, this
field will no longer be updated.

• customer_phone (TextField) – Customer phone. The customer’s phone number.
Until the invoice is finalized, this field will equal customer.phone. Once the invoice is
finalized, this field will no longer be updated.

• customer_shipping (JSONField) – Customer shipping. The customer’s shipping
information. Until the invoice is finalized, this field will equal customer.shipping. Once the
invoice is finalized, this field will no longer be updated.

• customer_tax_exempt (StripeEnumField) – Customer tax exempt. The cus-
tomer’s tax exempt status. Until the invoice is finalized, this field will equal cus-
tomer.tax_exempt. Once the invoice is finalized, this field will no longer be updated.

• default_payment_method (ForeignKey to PaymentMethod) – Default payment
method. Default payment method for the invoice. It must belong to the customer asso-
ciated with the invoice. If not set, defaults to the subscription’s default payment method, if
any, or to the default payment method in the customer’s invoice settings.

• discount (JSONField) – Discount. Describes the current discount applied to this sub-
scription, if there is one. When billing, a discount applied to a subscription overrides a
discount applied on a customer-wide basis.

• due_date (StripeDateTimeField) – Due date. The date on which payment for this
invoice is due. This value will be null for invoices where billing=charge_automatically.

• ending_balance (StripeQuantumCurrencyAmountField) – Ending balance.
Ending customer balance (in cents) after attempting to pay invoice. If the invoice has not
been attempted yet, this will be null.

• footer (TextField) – Footer. Footer displayed on the invoice.

• hosted_invoice_url (TextField) – Hosted invoice url. The URL for the hosted
invoice page, which allows customers to view and pay an invoice. If the invoice has not
been frozen yet, this will be null.

1.19. Models 65

dj-stripe Documentation, Release 2.3.0

• invoice_pdf (TextField) – Invoice pdf. The link to download the PDF for the in-
voice. If the invoice has not been frozen yet, this will be null.

• next_payment_attempt (StripeDateTimeField) – Next payment attempt. The
time at which payment will next be attempted.

• number (CharField) – Number. A unique, identifying string that appears on emails sent
to the customer for this invoice. This starts with the customer’s unique invoice_prefix if it is
specified.

• paid (BooleanField) – Paid. Whether payment was successfully collected for this
invoice. An invoice can be paid (most commonly) with a charge or with credit from the
customer’s account balance.

• payment_intent (OneToOneField to PaymentIntent) – Payment intent. The Pay-
mentIntent associated with this invoice. The PaymentIntent is generated when the invoice is
finalized, and can then be used to pay the invoice.Note that voiding an invoice will cancel
the PaymentIntent

• period_end (StripeDateTimeField) – Period end. End of the usage period during
which invoice items were added to this invoice.

• period_start (StripeDateTimeField) – Period start. Start of the usage period
during which invoice items were added to this invoice.

• post_payment_credit_notes_amount (StripeQuantumCurrencyAmountField)
– Post payment credit notes amount. Total amount (in cents) of all post-payment credit
notes issued for this invoice.

• pre_payment_credit_notes_amount (StripeQuantumCurrencyAmountField)
– Pre payment credit notes amount. Total amount (in cents) of all pre-payment credit notes
issued for this invoice.

• receipt_number (CharField) – Receipt number. This is the transaction number that
appears on email receipts sent for this invoice.

• starting_balance (StripeQuantumCurrencyAmountField) – Starting bal-
ance. Starting customer balance (in cents) before attempting to pay invoice. If the invoice
has not been attempted yet, this will be the current customer balance.

• statement_descriptor (CharField) – Statement descriptor. An arbitrary string
to be displayed on your customer’s credit card statement. The statement description may
not include <>”’ characters, and will appear on your customer’s statement in capital letters.
Non-ASCII characters are automatically stripped. While most banks display this informa-
tion consistently, some may display it incorrectly or not at all.

• status (StripeEnumField) – Status. The status of the invoice, one of draft, open,
paid, uncollectible, or void.

• status_transitions (JSONField) – Status transitions

• subscription (ForeignKey to Subscription) – Subscription. The subscription that
this invoice was prepared for, if any.

• subscription_proration_date (StripeDateTimeField) – Subscription pro-
ration date. Only set for upcoming invoices that preview prorations. The time used to
calculate prorations.

• subtotal (StripeDecimalCurrencyAmountField) – Subtotal. Total (as deci-
mal) of all subscriptions, invoice items, and prorations on the invoice before any discount or
tax is applied.

66 Chapter 1. Contents

dj-stripe Documentation, Release 2.3.0

• tax (StripeDecimalCurrencyAmountField) – Tax. The amount (as decimal)
of tax included in the total, calculated from tax_percent and the subtotal. If no
tax_percent is defined, this value will be null.

• tax_percent (StripePercentField) – Tax percent. This percentage of the subtotal
has been added to the total amount of the invoice, including invoice line items and discounts.
This field is inherited from the subscription’s tax_percent field, but can be changed
before the invoice is paid. This field defaults to null.

• threshold_reason (JSONField) – Threshold reason. If billing_reason is set to sub-
scription_threshold this returns more information on which threshold rules triggered the
invoice.

• total (StripeDecimalCurrencyAmountField) – Total (as decimal) after dis-
count.

• webhooks_delivered_at (StripeDateTimeField) – Webhooks delivered at.
The time at which webhooks for this invoice were successfully delivered (if the invoice had
no webhooks to deliver, this will match date). Invoice payment is delayed until webhooks
are delivered, or until all webhook delivery attempts have been exhausted.

• default_source (PaymentMethodForeignKey to DjstripePaymentMethod) –
Default source. The default payment source for the invoice. It must belong to the cus-
tomer associated with the invoice and be in a chargeable state. If not set, defaults to the
subscription’s default source, if any, or to the customer’s default source.

• default_tax_rates (ManyToManyField) – Default tax rates. The tax rates applied
to this invoice, if any.

classmethod Invoice.api_list(api_key=”, **kwargs)
Call the stripe API’s list operation for this model.

Parameters api_key (string) – The api key to use for this request. Defaults to
djstripe_settings.STRIPE_SECRET_KEY.

See Stripe documentation for accepted kwargs for each object.

Returns an iterator over all items in the query

Invoice.api_retrieve(api_key=None, stripe_account=None)
Call the stripe API’s retrieve operation for this model.

Parameters

• api_key (string) – The api key to use for this request. Defaults to set-
tings.STRIPE_SECRET_KEY.

• stripe_account (string) – The optional connected account for which this request is
being made.

Invoice.get_stripe_dashboard_url()
Get the stripe dashboard url for this object.

classmethod Invoice.upcoming(api_key=”, customer=None, coupon=None, subscription=None,
subscription_plan=None, subscription_prorate=None, subscrip-
tion_proration_date=None, subscription_quantity=None, subscrip-
tion_trial_end=None, **kwargs)

Gets the upcoming preview invoice (singular) for a customer.

At any time, you can preview the upcoming invoice for a customer. This will show you all the charges that are
pending, including subscription renewal charges, invoice item charges, etc. It will also show you any discount
that is applicable to the customer. (Source: https://stripe.com/docs/api#upcoming_invoice)

1.19. Models 67

https://stripe.com/docs/api#upcoming_invoice

dj-stripe Documentation, Release 2.3.0

Important: Note that when you are viewing an upcoming invoice, you are simply viewing a preview.

Parameters

• customer (Customer or string (customer ID)) – The identifier of the cus-
tomer whose upcoming invoice you’d like to retrieve.

• coupon (str) – The code of the coupon to apply.

• subscription (Subscription or string (subscription ID)) – The
identifier of the subscription to retrieve an invoice for.

• subscription_plan (Plan or string (plan ID)) – If set, the invoice re-
turned will preview updating the subscription given to this plan, or creating a new sub-
scription to this plan if no subscription is given.

• subscription_prorate (bool) – If previewing an update to a subscription, this de-
cides whether the preview will show the result of applying prorations or not.

• subscription_proration_date (datetime) – If previewing an update to a sub-
scription, and doing proration, subscription_proration_date forces the proration to be calcu-
lated as though the update was done at the specified time.

• subscription_quantity (int) – If provided, the invoice returned will preview up-
dating or creating a subscription with that quantity.

• subscription_trial_end (datetime) – If provided, the invoice returned will pre-
view updating or creating a subscription with that trial end.

Returns The upcoming preview invoice.

Return type UpcomingInvoice

Invoice.retry()
Retry payment on this invoice if it isn’t paid or uncollectible.

Invoice.plan
Gets the associated plan for this invoice.

In order to provide a consistent view of invoices, the plan object should be taken from the first invoice item that
has one, rather than using the plan associated with the subscription.

Subscriptions (and their associated plan) are updated by the customer and represent what is current, but invoice
items are immutable within the invoice and stay static/unchanged.

In other words, a plan retrieved from an invoice item will represent the plan as it was at the time an invoice was
issued. The plan retrieved from the subscription will be the currently active plan.

Returns The associated plan for the invoice.

Return type djstripe.Plan

Invoice.str_parts()
Extend this to add information to the string representation of the object

Return type list of str

classmethod Invoice.sync_from_stripe_data(data)
Syncs this object from the stripe data provided.

Foreign keys will also be retrieved and synced recursively.

68 Chapter 1. Contents

dj-stripe Documentation, Release 2.3.0

Parameters data (dict) – stripe object

Return type cls

InvoiceItem

class djstripe.models.InvoiceItem(*args, **kwargs)
Sometimes you want to add a charge or credit to a customer but only actually charge the customer’s card at the
end of a regular billing cycle. This is useful for combining several charges to minimize per-transaction fees or
having Stripe tabulate your usage-based billing totals.

Stripe documentation: https://stripe.com/docs/api/python#invoiceitems

Parameters

• djstripe_id (BigAutoField) – Id

• id (StripeIdField) – Id

• livemode (NullBooleanField) – Livemode. Null here indicates that the livemode
status is unknown or was previously unrecorded. Otherwise, this field indicates whether this
record comes from Stripe test mode or live mode operation.

• created (StripeDateTimeField) – Created. The datetime this object was created
in stripe.

• metadata (JSONField) – Metadata. A set of key/value pairs that you can attach to an
object. It can be useful for storing additional information about an object in a structured
format.

• description (TextField) – Description. A description of this object.

• djstripe_created (DateTimeField) – Djstripe created

• djstripe_updated (DateTimeField) – Djstripe updated

• amount (StripeDecimalCurrencyAmountField) – Amount. Amount invoiced
(as decimal).

• currency (StripeCurrencyCodeField) – Currency. Three-letter ISO currency
code

• customer (ForeignKey to Customer) – Customer. The customer associated with this
invoiceitem.

• date (StripeDateTimeField) – Date. The date on the invoiceitem.

• discountable (BooleanField) – Discountable. If True, discounts will apply to this
invoice item. Always False for prorations.

• invoice (ForeignKey to Invoice) – Invoice. The invoice to which this invoiceitem is
attached.

• period (JSONField) – Period

• period_end (StripeDateTimeField) – Period end. Might be the date when this
invoiceitem’s invoice was sent.

• period_start (StripeDateTimeField) – Period start. Might be the date when this
invoiceitem was added to the invoice

• plan (ForeignKey to Plan) – Plan. If the invoice item is a proration, the plan of the
subscription for which the proration was computed.

1.19. Models 69

https://stripe.com/docs/api/python#invoiceitems

dj-stripe Documentation, Release 2.3.0

• proration (BooleanField) – Proration. Whether or not the invoice item was created
automatically as a proration adjustment when the customer switched plans.

• quantity (IntegerField) – Quantity. If the invoice item is a proration, the quantity
of the subscription for which the proration was computed.

• subscription (ForeignKey to Subscription) – Subscription. The subscription that
this invoice item has been created for, if any.

• tax_rates (ManyToManyField) – Tax rates. The tax rates which apply to this invoice
item. When set, the default_tax_rates on the invoice do not apply to this invoice item.

classmethod InvoiceItem.api_list(api_key=”, **kwargs)
Call the stripe API’s list operation for this model.

Parameters api_key (string) – The api key to use for this request. Defaults to
djstripe_settings.STRIPE_SECRET_KEY.

See Stripe documentation for accepted kwargs for each object.

Returns an iterator over all items in the query

InvoiceItem.api_retrieve(api_key=None, stripe_account=None)
Call the stripe API’s retrieve operation for this model.

Parameters

• api_key (string) – The api key to use for this request. Defaults to set-
tings.STRIPE_SECRET_KEY.

• stripe_account (string) – The optional connected account for which this request is
being made.

InvoiceItem.get_stripe_dashboard_url()
Get the stripe dashboard url for this object.

InvoiceItem.str_parts()
Extend this to add information to the string representation of the object

Return type list of str

classmethod InvoiceItem.sync_from_stripe_data(data)
Syncs this object from the stripe data provided.

Foreign keys will also be retrieved and synced recursively.

Parameters data (dict) – stripe object

Return type cls

Plan

class djstripe.models.Plan(*args, **kwargs)
A subscription plan contains the pricing information for different products and feature levels on your site.

Stripe documentation: https://stripe.com/docs/api/python#plans)

Parameters

• djstripe_id (BigAutoField) – Id

• id (StripeIdField) – Id

70 Chapter 1. Contents

https://stripe.com/docs/api/python#plans

dj-stripe Documentation, Release 2.3.0

• livemode (NullBooleanField) – Livemode. Null here indicates that the livemode
status is unknown or was previously unrecorded. Otherwise, this field indicates whether this
record comes from Stripe test mode or live mode operation.

• created (StripeDateTimeField) – Created. The datetime this object was created
in stripe.

• metadata (JSONField) – Metadata. A set of key/value pairs that you can attach to an
object. It can be useful for storing additional information about an object in a structured
format.

• description (TextField) – Description. A description of this object.

• djstripe_created (DateTimeField) – Djstripe created

• djstripe_updated (DateTimeField) – Djstripe updated

• active (BooleanField) – Active. Whether the plan is currently available for new
subscriptions.

• aggregate_usage (StripeEnumField) – Aggregate usage. Specifies a usage ag-
gregation strategy for plans of usage_type=metered. Allowed values are sum for summing
up all usage during a period, last_during_period for picking the last usage record reported
within a period, last_ever for picking the last usage record ever (across period bounds) or
max which picks the usage record with the maximum reported usage during a period. De-
faults to sum.

• amount (StripeDecimalCurrencyAmountField) – Amount. Amount (as deci-
mal) to be charged on the interval specified.

• billing_scheme (StripeEnumField) – Billing scheme. Describes how to compute
the price per period. Either per_unit or tiered. per_unit indicates that the fixed amount (spec-
ified in amount) will be charged per unit in quantity (for plans with usage_type=licensed),
or per unit of total usage (for plans with usage_type=metered). tiered indicates that the unit
pricing will be computed using a tiering strategy as defined using the tiers and tiers_mode
attributes.

• currency (StripeCurrencyCodeField) – Currency. Three-letter ISO currency
code

• interval (StripeEnumField) – Interval. The frequency with which a subscription
should be billed.

• interval_count (IntegerField) – Interval count. The number of intervals (speci-
fied in the interval property) between each subscription billing.

• nickname (TextField) – Nickname. A brief description of the plan, hidden from cus-
tomers.

• product (ForeignKey to Product) – Product. The product whose pricing this plan de-
termines.

• tiers (JSONField) – Tiers. Each element represents a pricing tier. This parameter
requires billing_scheme to be set to tiered.

• tiers_mode (StripeEnumField) – Tiers mode. Defines if the tiering price should be
graduated or volume based. In volume-based tiering, the maximum quantity within a period
determines the per unit price, in graduated tiering pricing can successively change as the
quantity grows.

1.19. Models 71

dj-stripe Documentation, Release 2.3.0

• transform_usage (JSONField) – Transform usage. Apply a transformation to the
reported usage or set quantity before computing the billed price. Cannot be combined with
tiers.

• trial_period_days (IntegerField) – Trial period days. Number of trial period
days granted when subscribing a customer to this plan. Null if the plan has no trial period.

• usage_type (StripeEnumField) – Usage type. Configures how the quantity per pe-
riod should be determined, can be either metered or licensed. licensed will automatically
bill the quantity set for a plan when adding it to a subscription, metered will aggregate the
total usage based on usage records. Defaults to licensed.

• name (TextField) – Name. Name of the plan, to be displayed on invoices and in the
web interface.

• statement_descriptor (CharField) – Statement descriptor. An arbitrary string
to be displayed on your customer’s credit card statement. The statement description may
not include <>”’ characters, and will appear on your customer’s statement in capital letters.
Non-ASCII characters are automatically stripped. While most banks display this informa-
tion consistently, some may display it incorrectly or not at all.

classmethod Plan.api_list(api_key=”, **kwargs)
Call the stripe API’s list operation for this model.

Parameters api_key (string) – The api key to use for this request. Defaults to
djstripe_settings.STRIPE_SECRET_KEY.

See Stripe documentation for accepted kwargs for each object.

Returns an iterator over all items in the query

Plan.api_retrieve(api_key=None, stripe_account=None)
Call the stripe API’s retrieve operation for this model.

Parameters

• api_key (string) – The api key to use for this request. Defaults to set-
tings.STRIPE_SECRET_KEY.

• stripe_account (string) – The optional connected account for which this request is
being made.

Plan.get_stripe_dashboard_url()
Get the stripe dashboard url for this object.

classmethod Plan.get_or_create(**kwargs)
Get or create a Plan.

Plan.amount_in_cents

Plan.human_readable_price

Plan.str_parts()
Extend this to add information to the string representation of the object

Return type list of str

classmethod Plan.sync_from_stripe_data(data)
Syncs this object from the stripe data provided.

Foreign keys will also be retrieved and synced recursively.

Parameters data (dict) – stripe object

Return type cls

72 Chapter 1. Contents

dj-stripe Documentation, Release 2.3.0

Subscription

class djstripe.models.Subscription(*args, **kwargs)
Subscriptions allow you to charge a customer’s card on a recurring basis. A subscription ties a customer to a
particular plan you’ve created.

A subscription still in its trial period is trialing and moves to active when the trial period is over.

When payment to renew the subscription fails, the subscription becomes past_due. After Stripe has exhausted
all payment retry attempts, the subscription ends up with a status of either canceled or unpaid depending
on your retry settings.

Note that when a subscription has a status of unpaid, no subsequent invoices will be attempted (invoices will
be created, but then immediately automatically closed.

Additionally, updating customer card details will not lead to Stripe retrying the latest invoice.). After receiving
updated card details from a customer, you may choose to reopen and pay their closed invoices.

Stripe documentation: https://stripe.com/docs/api/python#subscriptions

Parameters

• djstripe_id (BigAutoField) – Id

• id (StripeIdField) – Id

• livemode (NullBooleanField) – Livemode. Null here indicates that the livemode
status is unknown or was previously unrecorded. Otherwise, this field indicates whether this
record comes from Stripe test mode or live mode operation.

• created (StripeDateTimeField) – Created. The datetime this object was created
in stripe.

• metadata (JSONField) – Metadata. A set of key/value pairs that you can attach to an
object. It can be useful for storing additional information about an object in a structured
format.

• description (TextField) – Description. A description of this object.

• djstripe_created (DateTimeField) – Djstripe created

• djstripe_updated (DateTimeField) – Djstripe updated

• application_fee_percent (StripePercentField) – Application fee percent.
A positive decimal that represents the fee percentage of the subscription invoice amount that
will be transferred to the application owner’s Stripe account each billing period.

• billing_cycle_anchor (StripeDateTimeField) – Billing cycle anchor. Deter-
mines the date of the first full invoice, and, for plans with month or year intervals, the day
of the month for subsequent invoices.

• cancel_at_period_end (BooleanField) – Cancel at period end. If the
subscription has been canceled with the at_period_end flag set to true,
cancel_at_period_end on the subscription will be true. You can use this attribute
to determine whether a subscription that has a status of active is scheduled to be canceled at
the end of the current period.

• canceled_at (StripeDateTimeField) – Canceled at. If the subscription has
been canceled, the date of that cancellation. If the subscription was canceled with
cancel_at_period_end, canceled_at will still reflect the date of the initial cancel-
lation request, not the end of the subscription period when the subscription is automatically
moved to a canceled state.

1.19. Models 73

https://stripe.com/docs/api/python#subscriptions

dj-stripe Documentation, Release 2.3.0

• collection_method (StripeEnumField) – Collection method. Either
charge_automatically, or send_invoice. When charging automatically, Stripe will at-
tempt to pay this subscription at the end of the cycle using the default source attached to
the customer. When sending an invoice, Stripe will email your customer an invoice with
payment instructions.

• current_period_end (StripeDateTimeField) – Current period end. End of the
current period for which the subscription has been invoiced. At the end of this period, a new
invoice will be created.

• current_period_start (StripeDateTimeField) – Current period start. Start of
the current period for which the subscription has been invoiced.

• customer (ForeignKey to Customer) – Customer. The customer associated with this
subscription.

• days_until_due (IntegerField) – Days until due. Number of days a customer has
to pay invoices generated by this subscription. This value will be null for subscriptions
where billing=charge_automatically.

• default_payment_method (ForeignKey to PaymentMethod) – Default payment
method. The default payment method for the subscription. It must belong to the customer
associated with the subscription. If not set, invoices will use the default payment method in
the customer’s invoice settings.

• default_source (PaymentMethodForeignKey to DjstripePaymentMethod) –
Default source. The default payment source for the subscription. It must belong to the
customer associated with the subscription and be in a chargeable state. If not set, defaults to
the customer’s default source.

• discount (JSONField) – Discount

• ended_at (StripeDateTimeField) – Ended at. If the subscription has ended (either
because it was canceled or because the customer was switched to a subscription to a new
plan), the date the subscription ended.

• next_pending_invoice_item_invoice (StripeDateTimeField) – Next
pending invoice item invoice. Specifies the approximate timestamp on which any
pending invoice items will be billed according to the schedule provided at pend-
ing_invoice_item_interval.

• pending_invoice_item_interval (JSONField) – Pending invoice item interval.
Specifies an interval for how often to bill for any pending invoice items. It is analogous to
calling Create an invoice for the given subscription at the specified interval.

• pending_setup_intent (ForeignKey to SetupIntent) – Pending setup intent. We
can use this SetupIntent to collect user authentication when creating a subscription without
immediate payment or updating a subscription’s payment method, allowing you to optimize
for off-session payments.

• pending_update (JSONField) – Pending update. If specified, pending updates that
will be applied to the subscription once the latest_invoice has been paid.

• plan (ForeignKey to Plan) – Plan. The plan associated with this subscription. This value
will be null for multi-plan subscriptions

• quantity (IntegerField) – Quantity. The quantity applied to this subscription. This
value will be null for multi-plan subscriptions

• start (StripeDateTimeField) – Start. Date of the last substantial change to this
subscription. For example, a change to the items array, or a change of status, will reset this

74 Chapter 1. Contents

dj-stripe Documentation, Release 2.3.0

timestamp.

• start_date (StripeDateTimeField) – Start date. Date when the subscription was
first created. The date might differ from the created date due to backdating.

• status (StripeEnumField) – Status. The status of this subscription.

• tax_percent (StripePercentField) – Tax percent. A positive decimal (with at
most two decimal places) between 1 and 100. This represents the percentage of the sub-
scription invoice subtotal that will be calculated and added as tax to the final amount each
billing period.

• trial_end (StripeDateTimeField) – Trial end. If the subscription has a trial, the
end of that trial.

• trial_start (StripeDateTimeField) – Trial start. If the subscription has a trial,
the beginning of that trial.

• default_tax_rates (ManyToManyField) – Default tax rates. The tax rates that
will apply to any subscription item that does not have tax_rates set. Invoices created will
have their default_tax_rates populated from the subscription.

classmethod Subscription.api_list(api_key=”, **kwargs)
Call the stripe API’s list operation for this model.

Parameters api_key (string) – The api key to use for this request. Defaults to
djstripe_settings.STRIPE_SECRET_KEY.

See Stripe documentation for accepted kwargs for each object.

Returns an iterator over all items in the query

Subscription.api_retrieve(api_key=None, stripe_account=None)
Call the stripe API’s retrieve operation for this model.

Parameters

• api_key (string) – The api key to use for this request. Defaults to set-
tings.STRIPE_SECRET_KEY.

• stripe_account (string) – The optional connected account for which this request is
being made.

Subscription.get_stripe_dashboard_url()
Get the stripe dashboard url for this object.

Subscription.update(plan=None, application_fee_percent=None, billing_cycle_anchor=None,
coupon=None, prorate=False, proration_date=None, metadata=None, quan-
tity=None, tax_percent=None, trial_end=None)

See Customer.subscribe()

Parameters

• plan (Plan or string (plan ID)) – The plan to which to subscribe the customer.

• application_fee_percent –

• billing_cycle_anchor –

• coupon –

• prorate (boolean) – Whether or not to prorate when switching plans. Default is True.

• proration_date (datetime) – If set, the proration will be calculated as though the
subscription was updated at the given time. This can be used to apply exactly the same pro-
ration that was previewed with upcoming invoice endpoint. It can also be used to implement

1.19. Models 75

dj-stripe Documentation, Release 2.3.0

custom proration logic, such as prorating by day instead of by second, by providing the time
that you wish to use for proration calculations.

• metadata –

• quantity –

• tax_percent –

• trial_end –

Note: The default value for prorate is the DJSTRIPE_PRORATION_POLICY setting.

Important: Updating a subscription by changing the plan or quantity creates a new Subscription in Stripe
(and dj-stripe).

Subscription.extend(delta)
Extends this subscription by the provided delta.

Parameters delta (timedelta) – The timedelta by which to extend this subscription.

Subscription.cancel(at_period_end=True)
Cancels this subscription. If you set the at_period_end parameter to true, the subscription will remain active
until the end of the period, at which point it will be canceled and not renewed. By default, the subscription
is terminated immediately. In either case, the customer will not be charged again for the subscription. Note,
however, that any pending invoice items that you’ve created will still be charged for at the end of the period
unless manually deleted. If you’ve set the subscription to cancel at period end, any pending prorations will also
be left in place and collected at the end of the period, but if the subscription is set to cancel immediately, pending
prorations will be removed.

By default, all unpaid invoices for the customer will be closed upon subscription cancellation. We do this in
order to prevent unexpected payment retries once the customer has canceled a subscription. However, you
can reopen the invoices manually after subscription cancellation to have us proceed with automatic retries, or
you could even re-attempt payment yourself on all unpaid invoices before allowing the customer to cancel the
subscription at all.

Parameters at_period_end (boolean) – A flag that if set to true will delay the cancellation
of the subscription until the end of the current period. Default is False.

Important: If a subscription is canceled during a trial period, the at_period_end flag will be overridden
to False so that the trial ends immediately and the customer’s card isn’t charged.

Subscription.reactivate()
Reactivates this subscription.

If a customer’s subscription is canceled with at_period_end set to True and it has not yet reached the end
of the billing period, it can be reactivated. Subscriptions canceled immediately cannot be reactivated. (Source:
https://stripe.com/docs/subscriptions/canceling-pausing)

Warning: Reactivating a fully canceled Subscription will fail silently. Be sure to check the returned
Subscription’s status.

Subscription.is_period_current()
Returns True if this subscription’s period is current, false otherwise.

76 Chapter 1. Contents

https://stripe.com/docs/subscriptions/canceling-pausing

dj-stripe Documentation, Release 2.3.0

Subscription.is_status_current()
Returns True if this subscription’s status is current (active or trialing), false otherwise.

Subscription.is_status_temporarily_current()
A status is temporarily current when the subscription is canceled with the at_period_end flag. The sub-
scription is still active, but is technically canceled and we’re just waiting for it to run out.

You could use this method to give customers limited service after they’ve canceled. For example, a video
on demand service could only allow customers to download their libraries and do nothing else when their
subscription is temporarily current.

Subscription.is_valid()
Returns True if this subscription’s status and period are current, false otherwise.

Subscription.str_parts()
Extend this to add information to the string representation of the object

Return type list of str

classmethod Subscription.sync_from_stripe_data(data)
Syncs this object from the stripe data provided.

Foreign keys will also be retrieved and synced recursively.

Parameters data (dict) – stripe object

Return type cls

SubscriptionItem

class djstripe.models.SubscriptionItem(*args, **kwargs)
Subscription items allow you to create customer subscriptions with more than one plan, making it easy to
represent complex billing relationships.

Stripe documentation: https://stripe.com/docs/api#subscription_items

Parameters

• djstripe_id (BigAutoField) – Id

• id (StripeIdField) – Id

• livemode (NullBooleanField) – Livemode. Null here indicates that the livemode
status is unknown or was previously unrecorded. Otherwise, this field indicates whether this
record comes from Stripe test mode or live mode operation.

• created (StripeDateTimeField) – Created. The datetime this object was created
in stripe.

• metadata (JSONField) – Metadata. A set of key/value pairs that you can attach to an
object. It can be useful for storing additional information about an object in a structured
format.

• description (TextField) – Description. A description of this object.

• djstripe_created (DateTimeField) – Djstripe created

• djstripe_updated (DateTimeField) – Djstripe updated

• plan (ForeignKey to Plan) – Plan. The plan the customer is subscribed to.

• quantity (PositiveIntegerField) – Quantity. The quantity of the plan to which
the customer should be subscribed.

1.19. Models 77

https://stripe.com/docs/api#subscription_items

dj-stripe Documentation, Release 2.3.0

• subscription (ForeignKey to Subscription) – Subscription. The subscription this
subscription item belongs to.

• tax_rates (ManyToManyField) – Tax rates. The tax rates which apply to this sub-
scription_item. When set, the default_tax_rates on the subscription do not apply to this
subscription_item.

classmethod SubscriptionItem.api_list(api_key=”, **kwargs)
Call the stripe API’s list operation for this model.

Parameters api_key (string) – The api key to use for this request. Defaults to
djstripe_settings.STRIPE_SECRET_KEY.

See Stripe documentation for accepted kwargs for each object.

Returns an iterator over all items in the query

SubscriptionItem.api_retrieve(api_key=None, stripe_account=None)
Call the stripe API’s retrieve operation for this model.

Parameters

• api_key (string) – The api key to use for this request. Defaults to set-
tings.STRIPE_SECRET_KEY.

• stripe_account (string) – The optional connected account for which this request is
being made.

SubscriptionItem.get_stripe_dashboard_url()
Get the stripe dashboard url for this object.

classmethod SubscriptionItem.sync_from_stripe_data(data)
Syncs this object from the stripe data provided.

Foreign keys will also be retrieved and synced recursively.

Parameters data (dict) – stripe object

Return type cls

TaxRate

class djstripe.models.TaxRate(*args, **kwargs)
Tax rates can be applied to invoices and subscriptions to collect tax.

Stripe documentation: https://stripe.com/docs/api/tax_rates

Parameters

• djstripe_id (BigAutoField) – Id

• id (StripeIdField) – Id

• livemode (NullBooleanField) – Livemode. Null here indicates that the livemode
status is unknown or was previously unrecorded. Otherwise, this field indicates whether this
record comes from Stripe test mode or live mode operation.

• created (StripeDateTimeField) – Created. The datetime this object was created
in stripe.

• metadata (JSONField) – Metadata. A set of key/value pairs that you can attach to an
object. It can be useful for storing additional information about an object in a structured
format.

78 Chapter 1. Contents

https://stripe.com/docs/api/tax_rates

dj-stripe Documentation, Release 2.3.0

• description (TextField) – Description. A description of this object.

• djstripe_created (DateTimeField) – Djstripe created

• djstripe_updated (DateTimeField) – Djstripe updated

• active (BooleanField) – Active. Defaults to true. When set to false, this tax rate
cannot be applied to objects in the API, but will still be applied to subscriptions and invoices
that already have it set.

• display_name (CharField) – Display name. The display name of the tax rates as it
will appear to your customer on their receipt email, PDF, and the hosted invoice page.

• inclusive (BooleanField) – Inclusive. This specifies if the tax rate is inclusive or
exclusive.

• jurisdiction (CharField) – Jurisdiction. The jurisdiction for the tax rate.

• percentage (StripePercentField) – Percentage. This represents the tax rate per-
cent out of 100.

classmethod TaxRate.api_list(api_key=”, **kwargs)
Call the stripe API’s list operation for this model.

Parameters api_key (string) – The api key to use for this request. Defaults to
djstripe_settings.STRIPE_SECRET_KEY.

See Stripe documentation for accepted kwargs for each object.

Returns an iterator over all items in the query

TaxRate.api_retrieve(api_key=None, stripe_account=None)
Call the stripe API’s retrieve operation for this model.

Parameters

• api_key (string) – The api key to use for this request. Defaults to set-
tings.STRIPE_SECRET_KEY.

• stripe_account (string) – The optional connected account for which this request is
being made.

TaxRate.get_stripe_dashboard_url()
Get the stripe dashboard url for this object.

classmethod TaxRate.sync_from_stripe_data(data)
Syncs this object from the stripe data provided.

Foreign keys will also be retrieved and synced recursively.

Parameters data (dict) – stripe object

Return type cls

UpcomingInvoice

class djstripe.models.UpcomingInvoice(*args, **kwargs)
The preview of an upcoming invoice - does not exist in the Django database.

See BaseInvoice.upcoming()

Logically it should be set abstract, but that doesn’t quite work since we do actually want to instantiate the model
and use relations.

Parameters

1.19. Models 79

dj-stripe Documentation, Release 2.3.0

• djstripe_id (BigAutoField) – Id

• livemode (NullBooleanField) – Livemode. Null here indicates that the livemode
status is unknown or was previously unrecorded. Otherwise, this field indicates whether this
record comes from Stripe test mode or live mode operation.

• created (StripeDateTimeField) – Created. The datetime this object was created
in stripe.

• metadata (JSONField) – Metadata. A set of key/value pairs that you can attach to an
object. It can be useful for storing additional information about an object in a structured
format.

• description (TextField) – Description. A description of this object.

• djstripe_created (DateTimeField) – Djstripe created

• djstripe_updated (DateTimeField) – Djstripe updated

• account_country (CharField) – Account country. The country of the business as-
sociated with this invoice, most often the business creating the invoice.

• account_name (TextField) – Account name. The public name of the business asso-
ciated with this invoice, most often the business creating the invoice.

• amount_due (StripeDecimalCurrencyAmountField) – Amount due. Final
amount due (as decimal) at this time for this invoice. If the invoice’s total is smaller than
the minimum charge amount, for example, or if there is account credit that can be applied to
the invoice, the amount_due may be 0. If there is a positive starting_balance for the invoice
(the customer owes money), the amount_due will also take that into account. The charge
that gets generated for the invoice will be for the amount specified in amount_due.

• amount_paid (StripeDecimalCurrencyAmountField) – Amount paid. The
amount, (as decimal), that was paid.

• amount_remaining (StripeDecimalCurrencyAmountField) – Amount re-
maining. The amount remaining, (as decimal), that is due.

• application_fee_amount (StripeDecimalCurrencyAmountField) – Ap-
plication fee amount. The fee (as decimal) that will be applied to the invoice and transferred
to the application owner’s Stripe account when the invoice is paid.

• attempt_count (IntegerField) – Attempt count. Number of payment attempts
made for this invoice, from the perspective of the payment retry schedule. Any payment
attempt counts as the first attempt, and subsequently only automatic retries increment the
attempt count. In other words, manual payment attempts after the first attempt do not affect
the retry schedule.

• attempted (BooleanField) – Attempted. Whether or not an attempt has been made
to pay the invoice. An invoice is not attempted until 1 hour after the invoice.created
webhook, for example, so you might not want to display that invoice as unpaid to your users.

• auto_advance (NullBooleanField) – Auto advance. Controls whether Stripe will
perform automatic collection of the invoice. When false, the invoice’s state will not auto-
matically advance without an explicit action.

• billing_reason (StripeEnumField) – Billing reason. Indicates the reason why
the invoice was created. subscription_cycle indicates an invoice created by a subscription
advancing into a new period. subscription_create indicates an invoice created due to creating
a subscription. subscription_update indicates an invoice created due to updating a subscrip-
tion. subscription is set for all old invoices to indicate either a change to a subscription or a
period advancement. manual is set for all invoices unrelated to a subscription (for example:

80 Chapter 1. Contents

dj-stripe Documentation, Release 2.3.0

created via the invoice editor). The upcoming value is reserved for simulated invoices per
the upcoming invoice endpoint. subscription_threshold indicates an invoice created due to
a billing threshold being reached.

• charge (OneToOneField to Charge) – Charge. The latest charge generated for this in-
voice, if any.

• collection_method (StripeEnumField) – Collection method. When charging au-
tomatically, Stripe will attempt to pay this invoice using the default source attached to the
customer. When sending an invoice, Stripe will email this invoice to the customer with
payment instructions.

• currency (StripeCurrencyCodeField) – Currency. Three-letter ISO currency
code

• customer (ForeignKey to Customer) – Customer. The customer associated with this
invoice.

• customer_address (JSONField) – Customer address. The customer’s address. Until
the invoice is finalized, this field will equal customer.address. Once the invoice is finalized,
this field will no longer be updated.

• customer_email (TextField) – Customer email. The customer’s email. Until the
invoice is finalized, this field will equal customer.email. Once the invoice is finalized, this
field will no longer be updated.

• customer_name (TextField) – Customer name. The customer’s name. Until the
invoice is finalized, this field will equal customer.name. Once the invoice is finalized, this
field will no longer be updated.

• customer_phone (TextField) – Customer phone. The customer’s phone number.
Until the invoice is finalized, this field will equal customer.phone. Once the invoice is
finalized, this field will no longer be updated.

• customer_shipping (JSONField) – Customer shipping. The customer’s shipping
information. Until the invoice is finalized, this field will equal customer.shipping. Once the
invoice is finalized, this field will no longer be updated.

• customer_tax_exempt (StripeEnumField) – Customer tax exempt. The cus-
tomer’s tax exempt status. Until the invoice is finalized, this field will equal cus-
tomer.tax_exempt. Once the invoice is finalized, this field will no longer be updated.

• default_payment_method (ForeignKey to PaymentMethod) – Default payment
method. Default payment method for the invoice. It must belong to the customer asso-
ciated with the invoice. If not set, defaults to the subscription’s default payment method, if
any, or to the default payment method in the customer’s invoice settings.

• discount (JSONField) – Discount. Describes the current discount applied to this sub-
scription, if there is one. When billing, a discount applied to a subscription overrides a
discount applied on a customer-wide basis.

• due_date (StripeDateTimeField) – Due date. The date on which payment for this
invoice is due. This value will be null for invoices where billing=charge_automatically.

• ending_balance (StripeQuantumCurrencyAmountField) – Ending balance.
Ending customer balance (in cents) after attempting to pay invoice. If the invoice has not
been attempted yet, this will be null.

• footer (TextField) – Footer. Footer displayed on the invoice.

1.19. Models 81

dj-stripe Documentation, Release 2.3.0

• hosted_invoice_url (TextField) – Hosted invoice url. The URL for the hosted
invoice page, which allows customers to view and pay an invoice. If the invoice has not
been frozen yet, this will be null.

• invoice_pdf (TextField) – Invoice pdf. The link to download the PDF for the in-
voice. If the invoice has not been frozen yet, this will be null.

• next_payment_attempt (StripeDateTimeField) – Next payment attempt. The
time at which payment will next be attempted.

• number (CharField) – Number. A unique, identifying string that appears on emails sent
to the customer for this invoice. This starts with the customer’s unique invoice_prefix if it is
specified.

• paid (BooleanField) – Paid. Whether payment was successfully collected for this
invoice. An invoice can be paid (most commonly) with a charge or with credit from the
customer’s account balance.

• payment_intent (OneToOneField to PaymentIntent) – Payment intent. The Pay-
mentIntent associated with this invoice. The PaymentIntent is generated when the invoice is
finalized, and can then be used to pay the invoice.Note that voiding an invoice will cancel
the PaymentIntent

• period_end (StripeDateTimeField) – Period end. End of the usage period during
which invoice items were added to this invoice.

• period_start (StripeDateTimeField) – Period start. Start of the usage period
during which invoice items were added to this invoice.

• post_payment_credit_notes_amount (StripeQuantumCurrencyAmountField)
– Post payment credit notes amount. Total amount (in cents) of all post-payment credit
notes issued for this invoice.

• pre_payment_credit_notes_amount (StripeQuantumCurrencyAmountField)
– Pre payment credit notes amount. Total amount (in cents) of all pre-payment credit notes
issued for this invoice.

• receipt_number (CharField) – Receipt number. This is the transaction number that
appears on email receipts sent for this invoice.

• starting_balance (StripeQuantumCurrencyAmountField) – Starting bal-
ance. Starting customer balance (in cents) before attempting to pay invoice. If the invoice
has not been attempted yet, this will be the current customer balance.

• statement_descriptor (CharField) – Statement descriptor. An arbitrary string
to be displayed on your customer’s credit card statement. The statement description may
not include <>”’ characters, and will appear on your customer’s statement in capital letters.
Non-ASCII characters are automatically stripped. While most banks display this informa-
tion consistently, some may display it incorrectly or not at all.

• status (StripeEnumField) – Status. The status of the invoice, one of draft, open,
paid, uncollectible, or void.

• status_transitions (JSONField) – Status transitions

• subscription (ForeignKey to Subscription) – Subscription. The subscription that
this invoice was prepared for, if any.

• subscription_proration_date (StripeDateTimeField) – Subscription pro-
ration date. Only set for upcoming invoices that preview prorations. The time used to
calculate prorations.

82 Chapter 1. Contents

dj-stripe Documentation, Release 2.3.0

• subtotal (StripeDecimalCurrencyAmountField) – Subtotal. Total (as deci-
mal) of all subscriptions, invoice items, and prorations on the invoice before any discount or
tax is applied.

• tax (StripeDecimalCurrencyAmountField) – Tax. The amount (as decimal)
of tax included in the total, calculated from tax_percent and the subtotal. If no
tax_percent is defined, this value will be null.

• tax_percent (StripePercentField) – Tax percent. This percentage of the subtotal
has been added to the total amount of the invoice, including invoice line items and discounts.
This field is inherited from the subscription’s tax_percent field, but can be changed
before the invoice is paid. This field defaults to null.

• threshold_reason (JSONField) – Threshold reason. If billing_reason is set to sub-
scription_threshold this returns more information on which threshold rules triggered the
invoice.

• total (StripeDecimalCurrencyAmountField) – Total (as decimal) after dis-
count.

• webhooks_delivered_at (StripeDateTimeField) – Webhooks delivered at.
The time at which webhooks for this invoice were successfully delivered (if the invoice had
no webhooks to deliver, this will match date). Invoice payment is delayed until webhooks
are delivered, or until all webhook delivery attempts have been exhausted.

• default_source (PaymentMethodForeignKey to DjstripePaymentMethod) –
Default source. The default payment source for the invoice. It must belong to the cus-
tomer associated with the invoice and be in a chargeable state. If not set, defaults to the
subscription’s default source, if any, or to the customer’s default source.

classmethod UpcomingInvoice.api_list(api_key=”, **kwargs)
Call the stripe API’s list operation for this model.

Parameters api_key (string) – The api key to use for this request. Defaults to
djstripe_settings.STRIPE_SECRET_KEY.

See Stripe documentation for accepted kwargs for each object.

Returns an iterator over all items in the query

UpcomingInvoice.api_retrieve(api_key=None, stripe_account=None)
Call the stripe API’s retrieve operation for this model.

Parameters

• api_key (string) – The api key to use for this request. Defaults to set-
tings.STRIPE_SECRET_KEY.

• stripe_account (string) – The optional connected account for which this request is
being made.

UpcomingInvoice.get_stripe_dashboard_url()
Get the stripe dashboard url for this object.

UpcomingInvoice.invoiceitems
Gets the invoice items associated with this upcoming invoice.

This differs from normal (non-upcoming) invoices, in that upcoming invoices are in-memory and do not persist
to the database. Therefore, all of the data comes from the Stripe API itself.

Instead of returning a normal queryset for the invoiceitems, this will return a mock of a queryset, but with the
data fetched from Stripe - It will act like a normal queryset, but mutation will silently fail.

1.19. Models 83

dj-stripe Documentation, Release 2.3.0

UpcomingInvoice.str_parts()
Extend this to add information to the string representation of the object

Return type list of str

classmethod UpcomingInvoice.sync_from_stripe_data(data)
Syncs this object from the stripe data provided.

Foreign keys will also be retrieved and synced recursively.

Parameters data (dict) – stripe object

Return type cls

UsageRecord

class djstripe.models.UsageRecord(*args, **kwargs)
Usage records allow you to continually report usage and metrics to Stripe for metered billing of plans.

Stripe documentation: https://stripe.com/docs/api#usage_records

Parameters

• djstripe_id (BigAutoField) – Id

• id (StripeIdField) – Id

• livemode (NullBooleanField) – Livemode. Null here indicates that the livemode
status is unknown or was previously unrecorded. Otherwise, this field indicates whether this
record comes from Stripe test mode or live mode operation.

• created (StripeDateTimeField) – Created. The datetime this object was created
in stripe.

• metadata (JSONField) – Metadata. A set of key/value pairs that you can attach to an
object. It can be useful for storing additional information about an object in a structured
format.

• description (TextField) – Description. A description of this object.

• djstripe_created (DateTimeField) – Djstripe created

• djstripe_updated (DateTimeField) – Djstripe updated

• quantity (PositiveIntegerField) – Quantity. The quantity of the plan to which
the customer should be subscribed.

• subscription_item (ForeignKey to SubscriptionItem) – Subscription item.
The subscription item this usage record contains data for.

classmethod UsageRecord.api_list(api_key=”, **kwargs)
Call the stripe API’s list operation for this model.

Parameters api_key (string) – The api key to use for this request. Defaults to
djstripe_settings.STRIPE_SECRET_KEY.

See Stripe documentation for accepted kwargs for each object.

Returns an iterator over all items in the query

UsageRecord.api_retrieve(api_key=None, stripe_account=None)
Call the stripe API’s retrieve operation for this model.

Parameters

84 Chapter 1. Contents

https://stripe.com/docs/api#usage_records

dj-stripe Documentation, Release 2.3.0

• api_key (string) – The api key to use for this request. Defaults to set-
tings.STRIPE_SECRET_KEY.

• stripe_account (string) – The optional connected account for which this request is
being made.

UsageRecord.get_stripe_dashboard_url()
Get the stripe dashboard url for this object.

classmethod UsageRecord.sync_from_stripe_data(data)
Syncs this object from the stripe data provided.

Foreign keys will also be retrieved and synced recursively.

Parameters data (dict) – stripe object

Return type cls

1.19.4 Connect

Account

class djstripe.models.Account(*args, **kwargs)
Stripe documentation: https://stripe.com/docs/api#account

Parameters

• djstripe_id (BigAutoField) – Id

• id (StripeIdField) – Id

• livemode (NullBooleanField) – Livemode. Null here indicates that the livemode
status is unknown or was previously unrecorded. Otherwise, this field indicates whether this
record comes from Stripe test mode or live mode operation.

• created (StripeDateTimeField) – Created. The datetime this object was created
in stripe.

• metadata (JSONField) – Metadata. A set of key/value pairs that you can attach to an
object. It can be useful for storing additional information about an object in a structured
format.

• description (TextField) – Description. A description of this object.

• djstripe_created (DateTimeField) – Djstripe created

• djstripe_updated (DateTimeField) – Djstripe updated

• branding_icon (ForeignKey to FileUpload) – Branding icon. An icon for the ac-
count. Must be square and at least 128px x 128px.

• branding_logo (ForeignKey to FileUpload) – Branding logo. A logo for the account
that will be used in Checkout instead of the icon and without the account’s name next to it
if provided. Must be at least 128px x 128px.

• business_profile (JSONField) – Business profile. Optional information related to
the business.

• business_type (StripeEnumField) – Business type. The business type.

• charges_enabled (BooleanField) – Charges enabled. Whether the account can
create live charges

1.19. Models 85

https://stripe.com/docs/api#account

dj-stripe Documentation, Release 2.3.0

• country (CharField) – Country. The country of the account

• company (JSONField) – Company. Information about the company or business. This
field is null unless business_type is set to company.

• default_currency (StripeCurrencyCodeField) – Default currency. The cur-
rency this account has chosen to use as the default

• details_submitted (BooleanField) – Details submitted. Whether account details
have been submitted. Standard accounts cannot receive payouts before this is true.

• email (CharField) – Email. The primary user’s email address.

• individual (JSONField) – Individual. Information about the person represented by
the account. This field is null unless business_type is set to individual.

• payouts_enabled (BooleanField) – Payouts enabled. Whether Stripe can send
payouts to this account

• product_description (CharField) – Product description. Internal-only descrip-
tion of the product sold or service provided by the business. It’s used by Stripe for risk and
underwriting purposes.

• requirements (JSONField) – Requirements. Information about the requirements for
the account, including what information needs to be collected, and by when.

• settings (JSONField) – Settings. Account options for customizing how the account
functions within Stripe.

• type (StripeEnumField) – Type. The Stripe account type.

• tos_acceptance (JSONField) – Tos acceptance. Details on the acceptance of the
Stripe Services Agreement

classmethod Account.api_list(api_key=”, **kwargs)
Call the stripe API’s list operation for this model.

Parameters api_key (string) – The api key to use for this request. Defaults to
djstripe_settings.STRIPE_SECRET_KEY.

See Stripe documentation for accepted kwargs for each object.

Returns an iterator over all items in the query

Account.api_retrieve(api_key=None, stripe_account=None)
Call the stripe API’s retrieve operation for this model.

Parameters

• api_key (string) – The api key to use for this request. Defaults to set-
tings.STRIPE_SECRET_KEY.

• stripe_account (string) – The optional connected account for which this request is
being made.

Account.get_stripe_dashboard_url()
Get the stripe dashboard url for this object.

classmethod Account.get_connected_account_from_token(access_token)

classmethod Account.get_default_account()

Account.str_parts()
Extend this to add information to the string representation of the object

Return type list of str

86 Chapter 1. Contents

dj-stripe Documentation, Release 2.3.0

classmethod Account.sync_from_stripe_data(data)
Syncs this object from the stripe data provided.

Foreign keys will also be retrieved and synced recursively.

Parameters data (dict) – stripe object

Return type cls

Application Fee

class djstripe.models.ApplicationFee(*args, **kwargs)
When you collect a transaction fee on top of a charge made for your user (using Connect), an ApplicationFee is
created in your account.

Stripe documentation: https://stripe.com/docs/api#application_fees

Parameters

• djstripe_id (BigAutoField) – Id

• id (StripeIdField) – Id

• livemode (NullBooleanField) – Livemode. Null here indicates that the livemode
status is unknown or was previously unrecorded. Otherwise, this field indicates whether this
record comes from Stripe test mode or live mode operation.

• created (StripeDateTimeField) – Created. The datetime this object was created
in stripe.

• metadata (JSONField) – Metadata. A set of key/value pairs that you can attach to an
object. It can be useful for storing additional information about an object in a structured
format.

• description (TextField) – Description. A description of this object.

• djstripe_created (DateTimeField) – Djstripe created

• djstripe_updated (DateTimeField) – Djstripe updated

• amount (StripeQuantumCurrencyAmountField) – Amount. Amount earned, in
cents.

• amount_refunded (StripeQuantumCurrencyAmountField) – Amount re-
funded. Amount in cents refunded (can be less than the amount attribute on the fee if a
partial refund was issued)

• balance_transaction (ForeignKey to BalanceTransaction) – Balance transac-
tion. Balance transaction that describes the impact on your account balance.

• charge (ForeignKey to Charge) – Charge. The charge that the application fee was taken
from.

• currency (StripeCurrencyCodeField) – Currency. Three-letter ISO currency
code

• refunded (BooleanField) – Refunded. Whether the fee has been fully refunded. If
the fee is only partially refunded, this attribute will still be false.

classmethod ApplicationFee.api_list(api_key=”, **kwargs)
Call the stripe API’s list operation for this model.

Parameters api_key (string) – The api key to use for this request. Defaults to
djstripe_settings.STRIPE_SECRET_KEY.

1.19. Models 87

https://stripe.com/docs/api#application_fees

dj-stripe Documentation, Release 2.3.0

See Stripe documentation for accepted kwargs for each object.

Returns an iterator over all items in the query

ApplicationFee.api_retrieve(api_key=None, stripe_account=None)
Call the stripe API’s retrieve operation for this model.

Parameters

• api_key (string) – The api key to use for this request. Defaults to set-
tings.STRIPE_SECRET_KEY.

• stripe_account (string) – The optional connected account for which this request is
being made.

ApplicationFee.get_stripe_dashboard_url()
Get the stripe dashboard url for this object.

classmethod ApplicationFee.sync_from_stripe_data(data)
Syncs this object from the stripe data provided.

Foreign keys will also be retrieved and synced recursively.

Parameters data (dict) – stripe object

Return type cls

Country Spec

class djstripe.models.CountrySpec(*args, **kwargs)
Stripe documentation: https://stripe.com/docs/api#country_specs

Parameters

• djstripe_created (DateTimeField) – Djstripe created

• djstripe_updated (DateTimeField) – Djstripe updated

• id (CharField) – Id

• default_currency (StripeCurrencyCodeField) – Default currency. The de-
fault currency for this country. This applies to both payment methods and bank accounts.

• supported_bank_account_currencies (JSONField) – Supported bank ac-
count currencies. Currencies that can be accepted in the specific country (for transfers).

• supported_payment_currencies (JSONField) – Supported payment currencies.
Currencies that can be accepted in the specified country (for payments).

• supported_payment_methods (JSONField) – Supported payment methods. Pay-
ment methods available in the specified country.

• supported_transfer_countries (JSONField) – Supported transfer countries.
Countries that can accept transfers from the specified country.

• verification_fields (JSONField) – Verification fields. Lists the types of verifi-
cation data needed to keep an account open.

classmethod CountrySpec.api_list(api_key=”, **kwargs)
Call the stripe API’s list operation for this model.

Parameters api_key (string) – The api key to use for this request. Defaults to
djstripe_settings.STRIPE_SECRET_KEY.

See Stripe documentation for accepted kwargs for each object.

88 Chapter 1. Contents

https://stripe.com/docs/api#country_specs

dj-stripe Documentation, Release 2.3.0

Returns an iterator over all items in the query

CountrySpec.api_retrieve(api_key=None, stripe_account=None)
Call the stripe API’s retrieve operation for this model.

Parameters

• api_key (string) – The api key to use for this request. Defaults to set-
tings.STRIPE_SECRET_KEY.

• stripe_account (string) – The optional connected account for which this request is
being made.

CountrySpec.get_stripe_dashboard_url()
Get the stripe dashboard url for this object.

classmethod CountrySpec.sync_from_stripe_data(data)
Syncs this object from the stripe data provided.

Foreign keys will also be retrieved and synced recursively.

Parameters data (dict) – stripe object

Return type cls

Transfer

class djstripe.models.Transfer(*args, **kwargs)
When Stripe sends you money or you initiate a transfer to a bank account, debit card, or connected Stripe
account, a transfer object will be created.

Stripe documentation: https://stripe.com/docs/api/python#transfers

Parameters

• djstripe_id (BigAutoField) – Id

• id (StripeIdField) – Id

• livemode (NullBooleanField) – Livemode. Null here indicates that the livemode
status is unknown or was previously unrecorded. Otherwise, this field indicates whether this
record comes from Stripe test mode or live mode operation.

• created (StripeDateTimeField) – Created. The datetime this object was created
in stripe.

• metadata (JSONField) – Metadata. A set of key/value pairs that you can attach to an
object. It can be useful for storing additional information about an object in a structured
format.

• description (TextField) – Description. A description of this object.

• djstripe_created (DateTimeField) – Djstripe created

• djstripe_updated (DateTimeField) – Djstripe updated

• amount (StripeDecimalCurrencyAmountField) – Amount. The amount trans-
ferred

• amount_reversed (StripeDecimalCurrencyAmountField) – Amount re-
versed. The amount (as decimal) reversed (can be less than the amount attribute on the
transfer if a partial reversal was issued).

1.19. Models 89

https://stripe.com/docs/api/python#transfers

dj-stripe Documentation, Release 2.3.0

• balance_transaction (ForeignKey to BalanceTransaction) – Balance transac-
tion. Balance transaction that describes the impact on your account balance.

• currency (StripeCurrencyCodeField) – Currency. Three-letter ISO currency
code

• destination (StripeIdField) – Destination. ID of the bank account, card, or Stripe
account the transfer was sent to.

• destination_payment (StripeIdField) – Destination payment. If the destination
is a Stripe account, this will be the ID of the payment that the destination account received
for the transfer.

• reversed (BooleanField) – Reversed. Whether or not the transfer has been fully
reversed. If the transfer is only partially reversed, this attribute will still be false.

• source_transaction (StripeIdField) – Source transaction. ID of the charge (or
other transaction) that was used to fund the transfer. If null, the transfer was funded from
the available balance.

• source_type (StripeEnumField) – Source type. The source balance from which
this transfer came.

• transfer_group (CharField) – Transfer group. A string that identifies this transac-
tion as part of a group.

classmethod Transfer.api_list(api_key=”, **kwargs)
Call the stripe API’s list operation for this model.

Parameters api_key (string) – The api key to use for this request. Defaults to
djstripe_settings.STRIPE_SECRET_KEY.

See Stripe documentation for accepted kwargs for each object.

Returns an iterator over all items in the query

Transfer.api_retrieve(api_key=None, stripe_account=None)
Call the stripe API’s retrieve operation for this model.

Parameters

• api_key (string) – The api key to use for this request. Defaults to set-
tings.STRIPE_SECRET_KEY.

• stripe_account (string) – The optional connected account for which this request is
being made.

Transfer.get_stripe_dashboard_url()
Get the stripe dashboard url for this object.

Transfer.str_parts()
Extend this to add information to the string representation of the object

Return type list of str

classmethod Transfer.sync_from_stripe_data(data)
Syncs this object from the stripe data provided.

Foreign keys will also be retrieved and synced recursively.

Parameters data (dict) – stripe object

Return type cls

90 Chapter 1. Contents

dj-stripe Documentation, Release 2.3.0

Transfer Reversal

class djstripe.models.TransferReversal(*args, **kwargs)
Stripe documentation: https://stripe.com/docs/api#transfer_reversals

Parameters

• djstripe_id (BigAutoField) – Id

• id (StripeIdField) – Id

• livemode (NullBooleanField) – Livemode. Null here indicates that the livemode
status is unknown or was previously unrecorded. Otherwise, this field indicates whether this
record comes from Stripe test mode or live mode operation.

• created (StripeDateTimeField) – Created. The datetime this object was created
in stripe.

• metadata (JSONField) – Metadata. A set of key/value pairs that you can attach to an
object. It can be useful for storing additional information about an object in a structured
format.

• description (TextField) – Description. A description of this object.

• djstripe_created (DateTimeField) – Djstripe created

• djstripe_updated (DateTimeField) – Djstripe updated

• amount (StripeQuantumCurrencyAmountField) – Amount. Amount, in cents.

• balance_transaction (ForeignKey to BalanceTransaction) – Balance transac-
tion. Balance transaction that describes the impact on your account balance.

• currency (StripeCurrencyCodeField) – Currency. Three-letter ISO currency
code

• transfer (ForeignKey to Transfer) – Transfer. The transfer that was reversed.

classmethod TransferReversal.api_list(api_key=”, **kwargs)
Call the stripe API’s list operation for this model.

Parameters api_key (string) – The api key to use for this request. Defaults to
djstripe_settings.STRIPE_SECRET_KEY.

See Stripe documentation for accepted kwargs for each object.

Returns an iterator over all items in the query

TransferReversal.api_retrieve(api_key=None, stripe_account=None)
Call the stripe API’s retrieve operation for this model.

Parameters

• api_key (string) – The api key to use for this request. Defaults to set-
tings.STRIPE_SECRET_KEY.

• stripe_account (string) – The optional connected account for which this request is
being made.

TransferReversal.get_stripe_dashboard_url()
Get the stripe dashboard url for this object.

classmethod TransferReversal.sync_from_stripe_data(data)
Syncs this object from the stripe data provided.

Foreign keys will also be retrieved and synced recursively.

1.19. Models 91

https://stripe.com/docs/api#transfer_reversals

dj-stripe Documentation, Release 2.3.0

Parameters data (dict) – stripe object

Return type cls

1.19.5 Fraud

TODO

1.19.6 Orders

TODO

1.19.7 Sigma

ScheduledQueryRun

class djstripe.models.ScheduledQueryRun(*args, **kwargs)
Stripe documentation: https://stripe.com/docs/api#scheduled_queries

Parameters

• djstripe_id (BigAutoField) – Id

• id (StripeIdField) – Id

• livemode (NullBooleanField) – Livemode. Null here indicates that the livemode
status is unknown or was previously unrecorded. Otherwise, this field indicates whether this
record comes from Stripe test mode or live mode operation.

• created (StripeDateTimeField) – Created. The datetime this object was created
in stripe.

• metadata (JSONField) – Metadata. A set of key/value pairs that you can attach to an
object. It can be useful for storing additional information about an object in a structured
format.

• description (TextField) – Description. A description of this object.

• djstripe_created (DateTimeField) – Djstripe created

• djstripe_updated (DateTimeField) – Djstripe updated

• data_load_time (StripeDateTimeField) – Data load time. When the query was
run, Sigma contained a snapshot of your Stripe data at this time.

• error (JSONField) – Error. If the query run was not succeesful, contains information
about the failure.

• file (ForeignKey to FileUpload) – File. The file object representing the results of the
query.

• result_available_until (StripeDateTimeField) – Result available until.
Time at which the result expires and is no longer available for download.

• sql (TextField) – Sql. SQL for the query.

• status (StripeEnumField) – Status. The query’s execution status.

• title (TextField) – Title. Title of the query.

92 Chapter 1. Contents

https://stripe.com/docs/api#scheduled_queries

dj-stripe Documentation, Release 2.3.0

classmethod ScheduledQueryRun.api_list(api_key=”, **kwargs)
Call the stripe API’s list operation for this model.

Parameters api_key (string) – The api key to use for this request. Defaults to
djstripe_settings.STRIPE_SECRET_KEY.

See Stripe documentation for accepted kwargs for each object.

Returns an iterator over all items in the query

ScheduledQueryRun.api_retrieve(api_key=None, stripe_account=None)
Call the stripe API’s retrieve operation for this model.

Parameters

• api_key (string) – The api key to use for this request. Defaults to set-
tings.STRIPE_SECRET_KEY.

• stripe_account (string) – The optional connected account for which this request is
being made.

classmethod ScheduledQueryRun.sync_from_stripe_data(data)
Syncs this object from the stripe data provided.

Foreign keys will also be retrieved and synced recursively.

Parameters data (dict) – stripe object

Return type cls

1.19.8 Webhooks

WebhookEventTrigger

class djstripe.models.WebhookEventTrigger(*args, **kwargs)
An instance of a request that reached the server endpoint for Stripe webhooks.

Webhook Events are initially UNTRUSTED, as it is possible for any web entity to post any data to our webhook
url. Data posted may be valid Stripe information, garbage, or even malicious. The ‘valid’ flag in this model
monitors this.

Parameters

• id (BigAutoField) – Id

• remote_ip (GenericIPAddressField) – Remote ip. IP address of the request
client.

• headers (JSONField) – Headers

• body (TextField) – Body

• valid (BooleanField) – Valid. Whether or not the webhook event has passed valida-
tion

• processed (BooleanField) – Processed. Whether or not the webhook event has been
successfully processed

• exception (CharField) – Exception

• traceback (TextField) – Traceback. Traceback if an exception was thrown during
processing

• event (ForeignKey to Event) – Event. Event object contained in the (valid) Webhook

1.19. Models 93

dj-stripe Documentation, Release 2.3.0

• djstripe_version (CharField) – Djstripe version. The version of dj-stripe when
the webhook was received

• created (DateTimeField) – Created

• updated (DateTimeField) – Updated

WebhookEventTrigger.json_body

WebhookEventTrigger.is_test_event

classmethod WebhookEventTrigger.from_request(request)
Create, validate and process a WebhookEventTrigger given a Django request object.

The process is three-fold: 1. Create a WebhookEventTrigger object from a Django request. 2. Validate the
WebhookEventTrigger as a Stripe event using the API. 3. If valid, process it into an Event object (and child
resource).

1.20 Settings

1.20.1 STRIPE_API_VERSION (=‘2019-05-16’)

The API version used to communicate with the Stripe API is configurable, and defaults to the latest version that has
been tested as working. Using a value other than the default is allowed, as a string in the format of YYYY-MM-DD.

For example, you can specify ‘2017-01-27’ to use that API version:

STRIPE_API_VERSION = '2017-01-27'

However you do so at your own risk, as using a value other than the default might result in incompatibilities between
Stripe and this library, especially if Stripe has labelled the differences between API versions as “Major”. Even small
differences such as a new enumeration value might cause issues.

For this reason it is best to assume that only the default version is supported.

For more information on API versioning, see the stripe documentation.

See also A note on Stripe API versions.

1.20.2 DJSTRIPE_IDEMPOTENCY_KEY_CALLBACK (=djstripe.settings._get_idempotency_key)

A function which will return an idempotency key for a particular object_type and action pair. By default, this is set
to a function which will create a djstripe.IdempotencyKey object and return its uuid. You may want to
customize this if you want to give your idempotency keys a different lifecycle than they normally would get.

The function takes the following signature:

def get_idempotency_key(object_type: str, action: str, livemode: bool):
return "<idempotency key>"

The function MUST return a string suitably random for the object_type/action pair, and usable in the Stripe
Idempotency-Key HTTP header. For more information, see the stripe documentation.

1.20.3 DJSTRIPE_PRORATION_POLICY (=False)

By default, plans are not prorated in dj-stripe. Concretely, this is how this translates:

94 Chapter 1. Contents

https://stripe.com/docs/upgrades
https://stripe.com/docs/upgrades

dj-stripe Documentation, Release 2.3.0

1) If a customer cancels their plan during a trial, the cancellation is effective right away.

2) If a customer cancels their plan outside of a trial, their subscription remains active until the subscription’s period
end, and they do not receive a refund.

3) If a customer switches from one plan to another, the new plan becomes effective right away, and the customer is
billed for the new plan’s amount.

Assigning True to DJSTRIPE_PRORATION_POLICY reverses the functioning of item 2 (plan cancellation) by
making a cancellation effective right away and refunding the unused balance to the customer, and affects the function-
ing of item 3 (plan change) by prorating the previous customer’s plan towards their new plan’s amount.

1.20.4 DJSTRIPE_SUBSCRIPTION_REQUIRED_EXCEPTION_URLS (=())

Used by djstripe.middleware.SubscriptionPaymentMiddleware

Rules:

• “(app_name)” means everything from this app is exempt

• “[namespace]” means everything with this name is exempt

• “namespace:name” means this namespaced URL is exempt

• “name” means this URL is exempt

• The entire djstripe namespace is exempt

• If settings.DEBUG is True, then django-debug-toolbar is exempt

Example:

DJSTRIPE_SUBSCRIPTION_REQUIRED_EXCEPTION_URLS = (
"(allauth)", # anything in the django-allauth URLConf
"[blogs]", # Anything in the blogs namespace
"products:detail", # A ProductDetail view you want shown to non-payers
"home", # Site homepage

)

Note: Adding app_names to applications.

To make the (allauth) work, you may need to define an app_name in the include() function in the URLConf.
For example:

in urls.py
url(r'^accounts/', include('allauth.urls', app_name="allauth")),

1.20.5 DJSTRIPE_SUBSCRIBER_CUSTOMER_KEY (=”djstripe_subscriber”)

Every Customer object created in Stripe is tagged with metadata This setting controls what the name of the key in
Stripe should be. The key name must be a string no more than 40 characters long.

You may set this to None or "" to disable that behaviour altogether. This is probably not something you want to do,
though.

1.20. Settings 95

https://stripe.com/docs/api#metadata

dj-stripe Documentation, Release 2.3.0

1.20.6 DJSTRIPE_SUBSCRIBER_MODEL (=settings.AUTH_USER_MODEL)

If the AUTH_USER_MODEL doesn’t represent the object your application’s subscription holder, you may define a
subscriber model to use here. It should be a string in the form of ‘app.model’.

Rules:

• DJSTRIPE_SUBSCRIBER_MODEL must have an email field. If your existing model has no email field, add
an email property that defines an email address to use.

• You must also implement DJSTRIPE_SUBSCRIBER_MODEL_REQUEST_CALLBACK.

Example Model:

class Organization(models.Model):
name = CharField(max_length=200, unique=True)
subdomain = CharField(max_length=63, unique=True, verbose_name="Organization

→˓Subdomain")
owner = ForeignKey(settings.AUTH_USER_MODEL, related_name="organization_owner",

→˓verbose_name="Organization Owner")

@property
def email(self):

return self.owner.email

1.20.7 DJSTRIPE_SUBSCRIBER_MODEL_MIGRATION_DEPENDENCY
(=”__first__”)

If the model referenced in DJSTRIPE_SUBSCRIBER_MODEL is not created in the __first__migration of an app
you can specify the migration name to depend on here. For example: “0003_here_the_subscriber_model_was_added”

1.20.8 DJSTRIPE_SUBSCRIBER_MODEL_REQUEST_CALLBACK (=None)

If you choose to use a custom subscriber model, you’ll need a way to pull it from request. That’s where this callback
comes in. It must be a callable or importable string to a callable that takes a request object and returns an instance of
DJSTRIPE_SUBSCRIBER_MODEL

Examples:

middleware.py

class DynamicOrganizationIDMiddleware(object):
""" Adds the current organization's ID based on the subdomain."""

def process_request(self, request):
subdomain = parse_subdomain(request.get_host())

try:
organization = Organization.objects.get(subdomain=subdomain)

except Organization.DoesNotExist:
return TemplateResponse(request=request, template='404.html', status=404)

else:
organization_id = organization.id

request.organization_id = organization_id

settings.py

96 Chapter 1. Contents

dj-stripe Documentation, Release 2.3.0

def organization_request_callback(request):
""" Gets an organization instance from the id passed through ``request``"""

from <models_path> import Organization # Import models here to avoid an
→˓``AppRegistryNotReady`` exception

return Organization.objects.get(id=request.organization_id)

Note: This callback only becomes active when DJSTRIPE_SUBSCRIBER_MODEL is set.

1.20.9 DJSTRIPE_USE_NATIVE_JSONFIELD (=False)

Setting this to True will make the various dj-stripe JSON fields use django.contrib.postgres.fields.
JSONField instead of the jsonfield library (which internally uses text fields).

The native Django JSONField uses the postgres jsonb column type, which efficiently stores JSON and can be queried
far more conveniently. Django also supports querying JSONField with the ORM.

Note: This is only supported on Postgres databases.

Note: Migrating between native and non-native must be done manually.

1.20.10 DJSTRIPE_WEBHOOK_URL (=r”^webhook/$”)

This is where you can set Stripe.com to send webhook response. You can set this to what you want to prevent
unnecessary hijinks from unfriendly people.

As this is embedded in the URLConf, this must be a resolvable regular expression.

1.20.11 DJSTRIPE_WEBHOOK_SECRET (=”“)

If this is set to a non-empty value, webhook signatures will be verified.

Learn more about webhook signature verification.

1.20.12 DJSTRIPE_WEBHOOK_VALIDATION= (=”verify_signature”)

This setting controls which type of validation is done on webhooks. Value can be "verify_signature" for sig-
nature verification (recommended default), "retrieve_event" for event retrieval (makes an extra HTTP request),
or None for no validation at all.

1.20.13 DJSTRIPE_WEBHOOK_TOLERANCE (=300)

Controls the milliseconds tolerance which wards against replay attacks. Leave this to its default value unless you know
what you’re doing.

1.20. Settings 97

https://www.postgresql.org/docs/9.6/static/functions-json.html
https://docs.djangoproject.com/en/1.11/ref/contrib/postgres/fields/#querying-jsonfield
https://stripe.com/docs/webhooks/signatures

dj-stripe Documentation, Release 2.3.0

1.20.14 DJSTRIPE_WEBHOOK_EVENT_CALLBACK (=None)

Webhook event callbacks allow an application to take control of what happens when an event from Stripe is received.
It must be a callable or importable string to a callable that takes an event object.

One suggestion is to put the event onto a task queue (such as celery) for asynchronous processing.

Examples:

callbacks.py

def webhook_event_callback(event):
""" Dispatches the event to celery for processing. """
from . import tasks
Ansychronous hand-off to celery so that we can continue immediately
tasks.process_webhook_event.s(event).apply_async()

tasks.py

from stripe.error import StripeError

@shared_task(bind=True)
def process_webhook_event(self, event):

""" Processes events from Stripe asynchronously. """
logger.info("Processing Stripe event: %s", str(event))
try:

event.process(raise_exception=True)
except StripeError as exc:

logger.error("Failed to process Stripe event: %s", str(event))
raise self.retry(exc=exc, countdown=60) # retry after 60 seconds

settings.py

DJSTRIPE_WEBHOOK_EVENT_CALLBACK = 'callbacks.webhook_event_callback'

1.20.15 STRIPE_API_HOST (= unset)

If set, this sets the base API host for Stripe. You may want to set this to, for example, "http://
localhost:12111" if you are running stripe-mock.

If this is set in production (DEBUG=False), a warning will be raised on manage.py check.

1.21 Utilities

Last Updated 2018-05-24

1.21.1 Subscriber Has Active Subscription Check

utils.subscriber_has_active_subscription(plan=None)
Helper function to check if a subscriber has an active subscription.

Throws improperlyConfigured if the subscriber is an instance of AUTH_USER_MODEL and
get_user_model().is_anonymous == True.

Activate subscription rules (or):

98 Chapter 1. Contents

https://github.com/stripe/stripe-mock

dj-stripe Documentation, Release 2.3.0

• customer has active subscription

If the subscriber is an instance of AUTH_USER_MODEL, active subscription rules (or):

• customer has active subscription

• user.is_superuser

• user.is_staff

Parameters

• subscriber (dj-stripe subscriber) – The subscriber for which to check for an
active subscription.

• plan (Plan or string (plan ID)) – The plan for which to check for an active
subscription. If plan is None and there exists only one subscription, this method will check
if that subscription is active. Calling this method with no plan and multiple subscriptions
will throw an exception.

1.21.2 Supported Currency Choice Generator

utils.get_supported_currency_choices()
Pull a stripe account’s supported currencies and returns a choices tuple of those supported currencies.

Parameters api_key (str) – The api key associated with the account from which to pull data.

1.21.3 Clear Expired Idempotency Keys

utils.clear_expired_idempotency_keys()

1.21.4 Convert Stripe Timestamp to Datetime

utils.convert_tstamp()
Convert a Stripe API timestamp response (unix epoch) to a native datetime.

Return type datetime

1.21.5 Friendly Currency Amount String

utils.get_friendly_currency_amount(currency)

1.22 Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

1.22. Contributing 99

dj-stripe Documentation, Release 2.3.0

1.22.1 Types of Contributions

Report Bugs

Report bugs at https://github.com/dj-stripe/dj-stripe/issues.

If you are reporting a bug, please include:

• The version of python and Django you’re running

• Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature” is open to whoever wants to implement
it.

Write Documentation

dj-stripe could always use more documentation, whether as part of the official dj-stripe docs, in docstrings, or even on
the web in blog posts, articles, and such.

If you are adding to dj-stripe’s documentation, you can see your changes by running tox -e docs. The documen-
tation will be generated in the docs/ directory, and you can open docs/_build/html/index.html in a web
browser.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/dj-stripe/dj-stripe/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

Contributor Discussion

For questions regarding contributions to dj-stripe, another avenue is our Discord channel at https://discord.gg/UJY8fcc.

1.22.2 Get Started!

Ready to contribute? Here’s how to set up dj-stripe for local development.

1. Fork the dj-stripe repo on GitHub.

2. Clone your fork locally:

100 Chapter 1. Contents

https://github.com/dj-stripe/dj-stripe/issues
https://github.com/dj-stripe/dj-stripe/issues
https://discord.gg/UJY8fcc

dj-stripe Documentation, Release 2.3.0

$ git clone git@github.com:your_name_here/dj-stripe.git

3. Set up your test database. If you’re running tests using PostgreSQL:

$ createdb djstripe

or if you want to test vs sqlite (for convenience) or MySQL, they can be selected by setting this environment
variable:

$ export DJSTRIPE_TEST_DB_VENDOR=sqlite

or

$ export DJSTRIPE_TEST_DB_VENDOR=mysql

For postgres and mysql, the database host,port,username and password can be set with environment variables,
see tests/settings.py

4. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you
set up your fork for local development:

$ mkvirtualenv dj-stripe
$ cd dj-stripe/
$ python setup.py develop

5. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

6. When you’re done making changes, check that your changes pass the tests. A quick test run can be done as
follows:

$ DJSTRIPE_TEST_DB_VENDOR=sqlite pytest --reuse-db

You should also check that the tests pass with other python and Django versions with tox. pytest will output both
command line and html coverage statistics and will warn you if your changes caused code coverage to drop.:

$ pip install tox
$ tox

7. If your changes altered the models you may need to generate Django migrations:

$ DJSTRIPE_TEST_DB_VENDOR=sqlite ./manage.py makemigrations

8. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

9. Submit a pull request through the GitHub website.

10. Congratulations, you’re now a dj-stripe contributor! Have some <3 from us.

1.22. Contributing 101

dj-stripe Documentation, Release 2.3.0

1.22.3 Preferred Django Model Field Types

When mapping from Stripe API field types to Django model fields, we try to follow Django best practises where
practical.

The following types should be preferred for fields that map to the Stripe API (which is almost all fields in our models).

Strings

• Stripe API string fields have a default maximum length of 5,000 characters.

• In some cases a maximum length (maxLength) is specified in the Stripe OpenAPI schema.

• We follow Django’s recommendation and avoid using null on string fields (which means we store "" for string
fields that are null in stripe). Note that is enforced in the sync logic in StripeModel._stripe_object_to_record.

• For long string fields (eg above 255 characters) we prefer TextField over Charfield.

Therefore the default type for string fields that don’t have a maxLength specified in the Stripe OpenAPI schema should
usually be:

str_field = TextField(max_length=5000, default=", blank=True, help_text="...")

Enumerations

Fields that have a defined set of values can be implemented using StripeEnumField.

Hash (dictionaries)

Use the JSONField in djstripe.fields, see also the DJSTRIPE_USE_NATIVE_JSONFIELD setting.

Currency amounts

Stripe handles all currency amounts as integer cents, we currently have a mixture of fields as integer cents and decimal
(eg dollar, euro etc) values, but we are aiming to standardise on cents (see https://github.com/dj-stripe/dj-stripe/issues/
955).

All new currency amount fields should use StripeQuantumCurrencyAmountField.

Dates and Datetimes

The Stripe API uses an integer timestamp (seconds since the Unix epoch) for dates and datetimes. We store this as a
datetime field, using StripeDateTimeField.

1.22.4 Django Migration Policy

Migrations are considered a breaking change, so it’s not usually not acceptable to add a migration to a stable branch,
it will be a new MAJOR.MINOR.0 release.

A workaround to this in the case that the Stripe API data isn’t compatible with out model (eg Stripe is sending null
to a non-null field) is to implement the _manipulate_stripe_object_hook classmethod on the model.

102 Chapter 1. Contents

https://github.com/stripe/openapi/issues/26#issuecomment-392957633
https://github.com/stripe/openapi/tree/master/openapi
https://docs.djangoproject.com/en/dev/ref/models/fields/#null
https://github.com/dj-stripe/dj-stripe/blob/master/djstripe/models/base.py
https://github.com/stripe/openapi/tree/master/openapi
https://github.com/dj-stripe/dj-stripe/issues/955
https://github.com/dj-stripe/dj-stripe/issues/955

dj-stripe Documentation, Release 2.3.0

Avoid new migrations with non-schema changes

If a code change produces a migration that doesn’t alter the database schema (eg changing help_text) then instead
of adding a new migration you can edit the most recent migration that affects the field in question.

e.g.: https://github.com/dj-stripe/dj-stripe/commit/e2762c38918a90f00c42ecf21187a920bd3a2087

Squash of unreleased migrations on master

We aim to keep the number of migration files per release to a minimum per MINOR release.

In the case where there are several unreleased migrations on master between releases, we squash migrations immedi-
ately before release.

So if you’re using the master branch with unreleased migrations, ensure you migrate with the squashed migration
before upgrading to the next major release.

For more details see the Squash migrations section of the Release process.

1.22.5 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. The pull request must not drop code coverage below the current level.

3. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring.

4. If the pull request makes changes to a model, include Django migrations.

5. The pull request should work for Python 3.6+. Check https://travis-ci.org/dj-stripe/dj-stripe/pull_requests and
make sure that the tests pass for all supported Python versions.

6. Code formatting: Make sure to install black and isort with pip install black isort and run
black .; isort -y at the dj-stripe root to keep a consistent style.

1.23 Test Fixtures

dj-stripe’s unit tests rely on fixtures to represent Stripe API and webhook data.

1.23.1 Rationale

These fixtures are partly hand-coded and partly generated by creating objects in Stripe and then retrieved via the API.

Each approach has pros and cons:

Hand-coding the fixtures allows them to be crafted specifically for a test case. They can also be terse, and nested
objects can be done by reference to avoid duplication. But maintaining or upgrading them is a painstaking manual
process.

Generating the fixtures via Stripe gives the big advantage that Stripe schema changes are automatically represented
in the fixtures, which should allow us to upgrade dj-stripe’s schema to match Stripe much more easily. This would
be done by updating dj-stripe’s targeted API version (DEFAULT_STRIPE_API_VERSION), regenerating the fixtures,

1.23. Test Fixtures 103

https://github.com/dj-stripe/dj-stripe/commit/e2762c38918a90f00c42ecf21187a920bd3a2087
https://travis-ci.org/dj-stripe/dj-stripe/pull_requests

dj-stripe Documentation, Release 2.3.0

and updating the model to match the fixture changes. The down side is it’s tricky to regenerate fixture files without
introducing big changes (eg to object ids) - the script does this by mapping a dummy id to various objects.

1.23.2 Regenerating the test fixtures

To regenerate the test fixtures (e.g. to populate the fixtures with new API fields from Stripe), do the following:

1. (one time only) Create a new Stripe account called “dj-stripe scratch”, with country set to United States. (we
use US so the currency matches the existing fixtures matches, in the future it would be good to test for other
countries).

2. If you already had this account ready and want to start again from scratch, you can delete all of the test data via
the button in Settings > Data https://dashboard.stripe.com/account/data

3. Activate a virtualenv with the dj-stripe project (see Getting Started)

4. Set the dj-stripe secret key environment variable to the secret key for this account (export
STRIPE_SECRET_KEY=sk_test_...)

5. Run the manage command to create the test objects in your stripe account if they don’t already exist, and
regenerate the local fixture files from them:

$./manage.py regenerate_test_fixtures

The command tries to avoid inconsequential changes to the fixtures (e.g the created timestamp) by restoring a whitelist
of values from the existing fixtures.

This functionality can be disabled by passing the parameter –update-sideeffect-fields.

1.24 Credits

1.24.1 Development Lead

• Alexander Kavanaugh (@kavdev)

• Daniel Greenfeld <pydanny@gmail.com>

• Jerome Leclanche (@jleclanche)

• Lee Skillen (@lskillen)

• John Carter (@therefromhere)

1.24.2 Contributors

• Audrey Roy Greenfeld (@audreyr)

• Buddy Lindsley (@buddylindsey)

• Yasmine Charif (@dollydagr)

• Mahdi Yusuf (@myusuf3)

• Luis Montiel <luismmontielg@gmail.com>

• Kulbir Singh (@kulbir)

• Dustin Farris (@dustinfarris)

104 Chapter 1. Contents

https://dashboard.stripe.com/account/data
mailto:pydanny@gmail.com
mailto:luismmontielg@gmail.com

dj-stripe Documentation, Release 2.3.0

• Liwen S (@sunliwen)

• centrove

• Chris Halpert (@cphalpert)

• Thomas Parslow (@almost)

• Leonid Shvechikov (@shvechikov)

• sromero84

• Peter Baumgartner (@ipmb)

• Vikas (@vikasgulati)

• Colton Allen (@cmanallen)

• Filip Wasilewski (@nigma)

• Martin Hill (@martinhill)

• Michael Thornhill <michael.thornhill@gmail.com>

• Tobias Lorenz (@Tyrdall)

• Ben Whalley

• nanvel

• jRobb (@jamesbrobb)

• Areski Belaid (@areski)

• José Padilla (@jpadilla)

• Ben Murden (@benmurden)

• Philippe Luickx (@philippeluickx)

• Chriss Mejía (@chrissmejia)

• Bill Huneke (@wahuneke)

• Matt Shaw (@unformatt)

• Chris Trengove (@ctrengove)

• Caleb Hattingh (@cjrh)

• Nicolas Delaby (@ticosax)

• Michaël Krens (@michi88)

• Yuri Prezument (@yprez)

• Raphael Deem (@r0fls)

• Irfan Ahmad (@erfaan)

• Slava Kyrachevsky (@scream4ik)

• Alec Brunelle (@aleccool213)

• James Hiew (@jameshiew)

• Dan Koch (@dmkoch)

• Denis Orehovsky (@apirobot)

1.24. Credits 105

mailto:michael.thornhill@gmail.com

dj-stripe Documentation, Release 2.3.0

1.25 History

1.25.1 2.3.0 (2020-04-19)

• Changed JSONField dependency back to jsonfield from jsonfield2 (see Warning about safe uninstall of json-
field2 on upgrade).

• Dropped support for Django 2.1 (#1056).

• Dropped support for python 3.5 (#1073).

• Fixed handling of TaxRate events (#1094).

• Fixed pagination issue in Invoice.sync_from_stripe_data (#1052).

• Fixed pagination issues in Subscription & Charge .sync_from_stripe_data (#1054).

• Tidyup _stripe_object_set_total_tax_amounts unique handling (#1139).

• Dropped previously-deprecated Invoice fields (see https://stripe.com/docs/upgrades#2018-11-08):

– .closed

– .forgiven

– .billing (renamed to .collection_method)

• Dropped previously-deprecated enums.InvoiceStatus (#1020).

• Deprecated the following fields - will be removed in 2.4 (#1087):

– Subscription.billing (use .collection_method instead)

– Subscription.start (use .start_date instead)

– Subscription.tax_percent (use .default_tax_rates instead)

• Added Invoice.status and enums.InvoiceStatus (#1020).

• Fixed str(Account) crash when settings or business_profile were NULL (#1104).

• Added new Invoice fields (#1020, #1087):

– .discount

– .default_source

– .status

• Added new Subscription fields (#1087):

– .default_payment_method

– .default_source

– .next_pending_invoice_item_invoice

– .pending_invoice_item_interval

– .pending_update

– .start_date

106 Chapter 1. Contents

https://github.com/rpkilby/jsonfield/
https://github.com/rpkilby/jsonfield2/
https://stripe.com/docs/upgrades#2018-11-08

dj-stripe Documentation, Release 2.3.0

Warning about safe uninstall of jsonfield2 on upgrade

Warning: Both jsonfield and jsonfield2 use the same import path, so if upgrading from dj-stripe~=2.2.0 in an
existing virtualenv, be sure to uninstall jsonfield2 first. eg:

ensure jsonfield is uninstalled before we install jsonfield2
pip uninstall jsonfield2 -y && pip install "dj-stripe>=2.3.0dev"

Otherwise, pip uninstall jsonfield2 will remove jsonfield’s jsonfield module from
site-packages, which would cause errors like ImportError: cannot import name
'JSONField' from 'jsonfield' (unknown location)

If you have hit this ImportError already after upgrading, running this should resolve it:

remove both jsonfield packages before reinstall to fix ImportError:
pip uninstall jsonfield jsonfield2 -y && pip install "dj-stripe>=2.3.0dev"

Note that this is only necessary if upgrading from dj-stripe 2.2.x, which temporarily depended on jsonfield2. This
process is not necessary if upgrading from an earlier version of dj-stripe.

1.25.2 2.2.2 (2020-01-20)

This is a bugfix-only version:

• Fixed handling of TaxRate events (#1094).

1.25.3 2.2.1 (2020-01-14)

This is a bugfix-only version:

• Fixed bad package build.

1.25.4 2.2.0 (2020-01-13)

• Changed JSONField dependency package from jsonfield to jsonfield2, for Django 3 compatibility (see Warn-
ing about safe uninstall of jsonfield on upgrade). Note that Django 2.1 requires jsonfield<3.1.

• Added support for Django 3.0 (requires jsonfield2>=3.0.3).

• Added support for python 3.8.

• Refactored UpcomingInvoice, so it’s no longer a subclass of Invoice (to allow Invoice to use
ManyToManyFields).

• Dropped previously-deprecated Account fields (see https://stripe.com/docs/upgrades#2019-02-19):

– .business_name

– .business_primary_color

– .business_url (changed to a property)

– .debit_negative_balances

– .decline_charge_on

– .display_name

1.25. History 107

https://github.com/rpkilby/jsonfield/
https://github.com/rpkilby/jsonfield2/
https://stripe.com/docs/upgrades#2019-02-19

dj-stripe Documentation, Release 2.3.0

– .legal_entity

– .payout_schedule

– .payout_statement_descriptor

– .statement_descriptor

– .support_email

– .support_phone

– .support_url

– .timezone

– .verification

• Dropped previously-deprecated Account.business_logo property (renamed to .branding_icon)

• Dropped previously-deprecated Customer.account_balance property (renamed to .balance)

• Dropped previously-deprecated properties Invoice.application_fee, Invoice.date

• Dropped previously-deprecated enum PaymentMethodType (use DjstripePaymentMethodType in-
stead)

• Renamed Invoice.billing to .collection_method (added deprecated property for the old name).

• Updated Invoice model to add missing fields.

• Added TaxRate model, and Invoice.default_tax_rates, InvoiceItem.tax_rates,
Invoice.total_tax_amounts, Subscription.default_tax_rates, SubscriptionItem.
tax_rates (#1027).

• Change urls.py to use the new style urls.

• Update forward relation fields in the admin to be raw id fields.

• Updated StripeQuantumCurrencyAmountField and StripeDecimalCurrencyAmountField
to support Stripe Large Charges (#1045).

• Update event handling so customer.subscription.deleted updates subscriptions to
status="canceled" instead of deleting it from our database, to match Stripe’s behaviour (#599).

• Added missing Refund.reason value, increases field width (#1075).

• Fixed Refund.status definition, reduces field width (#1076).

• Deprecated non-standard Invoice.status (renamed to Invoice.legacy_status) to make way for
the Stripe field (preparation for #1020).

Warning about safe uninstall of jsonfield on upgrade

Warning: Both jsonfield and jsonfield2 use the same import path, so if upgrading to dj-stripe>=2.2 in an existing
virtualenv, be sure to uninstall jsonfield first. eg:

ensure jsonfield is uninstalled before we install jsonfield2
pip uninstall jsonfield -y && pip install "dj-stripe>=2.2.0dev"

Otherwise, pip uninstall jsonfield will remove jsonfield2’s jsonfield module from
site-packages, which would cause errors like ImportError: cannot import name
'JSONField' from 'jsonfield' (unknown location)

108 Chapter 1. Contents

dj-stripe Documentation, Release 2.3.0

If you have hit this ImportError already after upgrading, running this should resolve it:

remove both jsonfield packages before reinstall to fix ImportError:
pip uninstall jsonfield jsonfield2 -y && pip install "dj-stripe>=2.2.0dev"

Note on usage of Stripe Elements JS

See https://dj-stripe.readthedocs.io/en/latest/stripe_elements_js.html for notes about usage of the Stripe Elements fron-
tend JS library.

TLDR: if you haven’t yet migrated to PaymentIntents, prefer stripe.createSource() to stripe.
createToken().

1.25.5 2.1.1 (2019-10-01)

This is a bugfix-only version:

• Updated webhook signals list (#1000).

• Fixed issue syncing PaymentIntent with destination charge (#960).

• Fixed Customer.subscription & .valid_subscriptions() to ignore
status=incomplete_expired (#1006).

• Fixed error on paymentmethod.detached event with card_xxx payment methods (#967).

• Added PaymentMethod.detach() (#943).

• Updated help_text on all currency fields to make it clear if they’re holding integer
cents (StripeQuantumCurrencyAmountField) or decimal dollar (or euro, pound etc)
(StripeDecimalCurrencyAmountField) (#999)

• Documented our preferred Django model field types (#986)

Upcoming migration of currency fields (storage as cents instead of dollars)

Please be aware that we’re looking at standardising our currency storage fields as integer quanta (cents) instead of
Decimal (dollar) values, to match stripe.

This is intended to be part of the 3.0 release, since it will involve some breaking changes. See #955 for details and
discussion.

1.25.6 2.1.0 (2019-09-12)

• Dropped Django 2.0 support

• The Python stripe library minimum version is now 2.32.0, also 2.36.0 is excluded due to a regression
(#991).

• Dropped previously-deprecated Charge.fee_details property.

• Dropped previously-deprecated Transfer.fee_details property.

• Dropped previously-deprecated field_name parameter to sync_from_stripe_data

• Dropped previously-deprecated alias StripeObject of StripeModel

1.25. History 109

https://dj-stripe.readthedocs.io/en/latest/stripe_elements_js.html

dj-stripe Documentation, Release 2.3.0

• Dropped previously-deprecated alias PaymentMethod of DjstripePaymentMethod

• Dropped previously-deprecated properties Charge.source_type and Charge.source_stripe_id

• enums.PaymentMethodType has been deprecated, use enums.DjstripePaymentMethodType

• Made SubscriptionItem.quantity nullable as per Plans with usage_type="metered" (follow-up
to #865)

• Added manage commands djstripe_sync_models and djstripe_process_events (#727, #89)

• Fixed issue with re-creating a customer after Customer.purge() (#916)

• Fixed sync of Customer Bank Accounts (#829)

• Fixed Subscription.is_status_temporarily_current() (#852)

• New models

– Payment Intent

– Setup Intent

– Payment Method

– Session

• Added fields to Customer model: address, invoice_prefix, invoice_settings, phone,
preferred_locales, tax_exempt

Changes from API 2018-11-08:

• Added Invoice.auto_advance, deprecated Invoice.closed and Invoice.forgiven, see https:
//stripe.com/docs/billing/invoices/migrating-new-invoice-states#autoadvance

Changes from API 2019-02-19:

• Major changes to Account fields, see https://stripe.com/docs/upgrades#2019-02-19 , updated Account fields to
match API 2019-02-19:

• Added Account.business_profile, .business_type, .company, .individual, .
requirements, .settings

• Deprecated the existing fields, to be removed in 2.2

• Special handling of the icon and logo fields:

– Renamed Account.business_logo to Account.branding_icon (note that in Stripe’s
API Account.business_logo was renamed to Account.settings.branding_icon, and
Account.business_logo_large (which we didn’t have a field for) was renamed to Account.
settings.branding_logo)

– Added deprecated property for Account.business_logo

– Added Account.branding_logo as a ForeignKey

– Populate Account.branding_icon and .branding_logo from the new Account.
settings.branding.icon and .logo

Changes from API 2019-03-14:

• Renamed Invoice.application_fee to Invoice.application_fee_amount (added deprecated
property for the old name)

• Removed Invoice.date, in place of Invoice.created (added deprecated property for the old name)

• Added Invoice.status_transitions

110 Chapter 1. Contents

https://stripe.com/docs/billing/invoices/migrating-new-invoice-states#autoadvance
https://stripe.com/docs/billing/invoices/migrating-new-invoice-states#autoadvance
https://stripe.com/docs/upgrades#2019-02-19

dj-stripe Documentation, Release 2.3.0

• Renamed Customer.account_balance to Customer.balance (added deprecated property for the old
name)

• Renamed Customer.payment_methods to Customer.customer_payment_methods

• Added new SubscriptionStatus.incomplete and SubscriptionStatus.
incomplete_expired statuses (#974)

• Added new BalanceTransactionType values (#983)

Squashed dev migrations

As per our migration policy unreleased migrations on the master branch (migration numbers >=0004) have been
squashed.

If you have been using the 2.1.0dev branch from master, you’ll need to run the squashed migrations migrations before
upgrading to >=2.1.0.

The simplest way to do this is to pip install dj-stripe==2.1.0rc0 and migrate, alternatively check out
the 2.1.0rc0 git tag.

1.25.7 2.0.5 (2019-09-12)

This is a bugfix-only version:

• Avoid stripe==2.36.0 due to regression (#991)

1.25.8 2.0.4 (2019-09-09)

This is a bugfix-only version:

• Fixed irreversible migration (#909)

1.25.9 2.0.3 (2019-06-11)

This is a bugfix-only version:

• In _get_or_create_from_stripe_object, wrap create _create_from_stripe_object in
transaction, fixes TransactionManagementError on race condition in webhook processing (#877/#903).

1.25.10 2.0.2 (2019-06-09)

This is a bugfix-only version:

• Don’t save event objects if the webhook processing fails (#832).

• Fixed IntegrityError when REMOTE_ADDR is an empty string.

• Deprecated field_name parameter to sync_from_stripe_data

1.25. History 111

https://dj-stripe.readthedocs.io/en/latest/project/contributing.html#squash-of-unreleased-migrations-on-master

dj-stripe Documentation, Release 2.3.0

1.25.11 2.0.1 (2019-04-29)

This is a bugfix-only version:

• Fixed an error on invoiceitem.updated (#848).

• Handle test webhook properly in recent versions of Stripe API (#779). At some point 2018 Stripe silently
changed the ID used for test events and evt_00000000000000 is not used anymore.

• Fixed OperationalError seen in migration 0003 on postgres (#850).

• Fixed issue with migration 0003 not being unapplied correctly (#882).

• Fixup missing SubscriptionItem.quantity on Plans with usage_type="metered" (#865).

• Fixed Plan.create() (#870).

1.25.12 2.0.0 (2019-03-01)

• The Python stripe library minimum version is now 2.3.0.

• PaymentMethod has been renamed to DjstripePaymentMethod (#841). An alias remains but will be
removed in the next version.

• Dropped support for Django < 2.0, Python < 3.4.

• Dropped previously-deprecated stripe_objects module.

• Dropped previously-deprecated stripe_timestamp field.

• Dropped previously-deprecated Charge.receipt_number field.

• Dropped previously-deprecated StripeSource alias for Card

• Dropped previously-deprecated SubscriptionView, CancelSubscriptionView and
CancelSubscriptionForm.

• Removed the default value from DJSTRIPE_SUBSCRIPTION_REDIRECT.

• All stripe_id fields have been renamed id.

• Charge.source_type has been deprecated. Use Charge.source.type.

• Charge.source_stripe_id has been deprecated. Use Charge.source.id.

• All deprecated Transfer fields (Stripe API < 2017-04-06), have been dropped. This includes date,
destination_type (type), failure_code, failure_message, statement_descriptor and
status.

• Fixed IntegrityError when REMOTE_ADDR is missing (#640).

• New models: - ApplicationFee - ApplicationFeeRefund - BalanceTransaction -
CountrySpec - ScheduledQuery - SubscriptionItem - TransferReversal - UsageRecord

• The fee and fee_details attributes of both the Charge and Transfer objects are no longer stored
in the database. Instead, they access their respective new balance_transaction foreign key. Note that
fee_details has been deprecated on both models.

• The fraudulent attribute on Charge is now a property that checks the fraud_details field.

• Object key validity is now always enforced (#503).

• Customer.sources no longer refers to a Card queryset, but to a Source queryset. In order to correctly
transition, you should change all your references to customer.sources to customer.legacy_cards
instead. The legacy_cards attribute already exists in 1.2.0.

112 Chapter 1. Contents

dj-stripe Documentation, Release 2.3.0

• Customer.sources_v3 is now named Customer.sources.

• A new property Customer.payment_methods is now available, which allows you to iterate over all of a
customer’s payment methods (sources then cards).

• Card.customer is now nullable and cards are no longer deleted when their corresponding customer is deleted
(#654).

• Webhook signature verification is now available and is preferred. Set the DJSTRIPE_WEBHOOK_SECRET
setting to your secret to start using it.

• StripeObject has been renamed StripeModel. An alias remains but will be removed in the next version.

• The metadata key used in the Customer object can now be configured by changing the
DJSTRIPE_SUBSCRIBER_CUSTOMER_KEY setting. Setting this to None or an empty string now also dis-
ables the behaviour altogether.

• Text-type fields in dj-stripe will no longer ever be None. Instead, any falsy text field will return an empty string.

• Switched test runner to pytest-django

• StripeModel.sync_from_stripe_data() will now automatically retrieve related objects and popu-
late foreign keys (#681)

• Added Coupon.name

• Added Transfer.balance_transaction

• Exceptions in webhooks are now re-raised as well as saved in the database (#833)

1.25.13 1.2.4 (2019-02-27)

This is a bugfix-only version:

• Allow billing_cycle_anchor argument when creating a subscription (#814)

• Fixup plan amount null with tier plans (#781)

• Update Cancel subscription view tests to match backport in f64af57

• Implement Invoice._manipulate_stripe_object_hook for compatability with API 2018-11-08 (#771)

• Fix product webhook for type=”good” (#724)

• Add trial_from_plan, trial_period_days args to Customer.subscribe() (#709)

1.25.14 1.2.3 (2018-10-13)

This is a bugfix-only version:

• Updated Subscription.cancel() for compatibility with Stripe 2018-08-23 (#723)

1.25.15 1.2.2 (2018-08-11)

This is a bugfix-only version:

• Fixed an error with request.urlconf in some setups (#562)

• Always save text-type fields as empty strings in db instead of null (#713)

• Fix support for DJSTRIPE_SUBSCRIBER_MODEL_MIGRATION_DEPENDENCY (#707)

1.25. History 113

dj-stripe Documentation, Release 2.3.0

• Fix reactivate() with Stripe API 2018-02-28 and above

1.25.16 1.2.1 (2018-07-18)

This is a bugfix-only version:

• Fixed various Python 2.7 compatibility issues

• Fixed issues with max_length of receipt_number

• Fixed various fields incorrectly marked as required

• Handle product webhook calls

• Fix compatibility with stripe-python 2.0.0

1.25.17 1.2.0 (2018-06-11)

The dj-stripe 1.2.0 release resets all migrations.

Do not upgrade to 1.2.0 directly from 1.0.1 or below. You must upgrade to 1.1.0 first.

Please read the 1.1.0 release notes below for more information.

1.25.18 1.1.0 (2018-06-11)

In dj-stripe 1.1.0, we made a lot of changes to models in order to bring the dj-stripe model state much closer to the
upstream API objects. If you are a current user of dj-stripe, you will most likely have to make changes in order to
upgrade. Please read the full changelog below. If you are having trouble upgrading, you may ask for help by filing an
issue on GitHub.

Migration reset

The next version of dj-stripe, 1.2.0, will reset all the migrations to 0001_initial. Migrations are currently in an
unmaintainable state.

What this means is you will not be able to upgrade directly to dj-stripe 1.2.0. You must go through 1.1.0 first,
run ‘‘manage.py migrate djstripe‘‘, then upgrade to 1.2.0.

Python 2.7 end-of-life

dj-stripe 1.1.0 drops support for Django 1.10 and adds support for Django 2.0. Django 1.11+ and Python 2.7+ or 3.4+
are required.

Support for Python versions older than 3.5, and Django versions older than 2.0, will be dropped in dj-stripe 2.0.0.

Backwards-incompatible changes and deprecations

Removal of polymorphic models

The model architecture of dj-stripe has been simplified. Polymorphic models have been dropped and the old base
StripeCustomer, StripeCharge, StripeInvoice, etc models have all been merged into the top-level Customer, Charge,
Invoice, etc models.

114 Chapter 1. Contents

https://github.com/dj-stripe/dj-stripe/issues
https://github.com/dj-stripe/dj-stripe/issues

dj-stripe Documentation, Release 2.3.0

Importing those legacy models from djstripe.stripe_objects will yield the new ones. This is deprecated
and support for this will be dropped in dj-stripe 2.0.0.

Full support for Stripe Sources (Support for v3 stripe.js)

Stripe sources (src_XXXX) are objects that can arbitrarily reference any of the payment method types that Stripe
supports. However, the legacy Card object (with object IDs like card_XXXX or cc_XXXX) is not a Source object,
and cannot be turned into a Source object at this time.

In order to support both Card and Source objects in ForeignKeys, a new model PaymentMethod has been devised
(renamed to DjstripePaymentMethod in 2.0). That model can resolve into a Card, a Source, or a BankAccount
object.

• The ‘‘default_source‘‘ attribute on ‘‘Customer‘‘ now refers to a ‘‘PaymentMethod‘‘ object. You will need
to call .resolve() on it to get the Card or Source in question.

• References to Customer.sources expecting a queryset of Card objects should be updated to Customer.
legacy_cards.

• The legacy StripeSource name refers to the Card model. This will be removed in dj-stripe 2.0.0. Update
your references to either Card or Source.

• enums.SourceType has been renamed to enums.LegacySourceType. enums.SourceType now
refers to the actual Stripe Source types enum.

Core fields renamed

• The numeric id field has been renamed to djstripe_id. This avoids a clash with the upstream stripe id.
Accessing .id is deprecated and **will reference the upstream stripe_id in dj-stripe 2.0.0

1.25.19 1.0.0 (2017-08-12)

It’s finally here! We’ve made significant changes to the codebase and are now compliant with stripe API version
2017-06-05.

I want to give a huge thanks to all of our contributors for their help in making this happen, especially Bill Huneke
(@wahuneke) for his impressive design work and @jleclanche for really pushing this release along.

I also want to welcome onboard two more maintainers, @jleclanche and @lskillen. They’ve stepped up and have
graciously dedicated their resources to making dj-stripe such an amazing package.

Almost all methods now mimic the parameters of those same methods in the stripe API. Note that some methods
do not have some parameters implemented. This is intentional. That being said, expect all method signatures to be
different than those in previous versions of dj-stripe.

Finally, please note that there is still a bit of work ahead of us. Not everything in the Stripe API is currently supported
by dj-stripe – we’re working on it. That said, v1.0.0 has been thoroughly tested and is verified stable in production
applications.

A few things to get excited for

• Multiple subscription support (finally)

• Multiple sources support (currently limited to Cards)

• Idempotency support (See #455, #460 for discussion – big thanks to @jleclanche)

1.25. History 115

dj-stripe Documentation, Release 2.3.0

• Full model documentation

• Objects that come through webhooks are now tied to the API version set in dj-stripe. No more errors if dj-stripe
falls behind the newest stripe API version.

• Any create/update action on an object automatically syncs the object.

• Concurrent LIVE and TEST mode support (Thanks to @jleclanche). Note that you’ll run into issues if
livemode isn’t set on your existing customer objects.

• All choices are now enum-based (Thanks @jleclanche, See #520). Access them from the new djstripe.
enums module. The ability to check against model property based choices will be deprecated in 1.1

• Support for the Coupon model, and coupons on Customer objects.

• Support for the Payout/Transfer split from api version 2017-04-06.

What still needs to be done (in v1.1.0)

• Documentation. Our original documentation was not very helpful, but it covered the important bits. It will be
very out of date after this update and will need to be rewritten. If you feel like helping, we could use all the help
we can get to get this pushed out asap.

• Master sync re-write. This sounds scary, but really isn’t. The current management methods run sync methods
on Customer that aren’t very helpful and are due for removal. My plan is to write something that first updates
local data (via api_retrieve and sync_from_stripe_data) and then pulls all objects from Stripe and
populates the local database with any records that don’t already exist there.

You might be wondering, “Why are they releasing this if there are only a few things left?” Well, that thinking
turned this into a two year release. . . Trust me, this is a good thing.

Significant changes (mostly backwards-incompatible)

• Idempotency. #460 introduces idempotency keys and implements idempotency for Customer.
get_or_create(). Idempotency will be enabled for all calls that need it.

• Improved Admin Interface. This is almost complete. See #451 and #452.

• Drop non-trivial endpoint views. We’re dropping everything except the webhook endpoint and the subscription
cancel endpoint. See #428.

• Drop support for sending receipts. Stripe now handles this for you. See #478.

• Drop support for plans as settings, including custom plan hierarchy (if you want this, write something custom)
and the dynamic trial callback. We’ve decided to gut having plans as settings. Stripe should be your source of
truth; create your plans there and sync them down manually. If you need to create plans locally for testing, etc.,
simply use the ORM to create Plan models. The sync rewrite will make this drop less annoying.

• Orphan Customer Sync. We will now sync Customer objects from Stripe even if they aren’t linked to local
subscriber objects. You can link up subscribers to those Customers manually.

• Concurrent Live and Test Mode. dj-stripe now supports test-mode and live-mode Customer objects con-
currently. As a result, the User.customer One-to-One reverse-relationship is now the User.djstripe_customers
RelatedManager. (Thanks @jleclanche) #440. You’ll run into some dj-stripe check issues if you don’t update
your KEY settings accordingly. Check our GitHub issue tracker for help on this.

116 Chapter 1. Contents

https://stripe.com/docs/transfer-payout-split

dj-stripe Documentation, Release 2.3.0

SETTINGS

• The PLAN_CHOICES, PLAN_LIST, and PAYMENT_PLANS objects are removed. Use Plan.objects.all() in-
stead.

• The plan_from_stripe_id function is removed. Use Plan.objects.get(stripe_id=)

SYNCING

• sync_plans no longer takes an api_key

• sync methods no longer take a cu parameter

• All sync methods are now private. We’re in the process of building a better syncing mechanism.

UTILITIES

• dj-stripe decorators now take a plan argument. If you’re passing in a custom test function to
subscriber_passes_pay_test, be sure to account for this new argument.

MIXINS

• The context provided by dj-stripe’s mixins has changed. PaymentsContextMixin now provides
STRIPE_PUBLIC_KEY and plans (changed to Plan.objects.all()). SubscriptionMixin now
provides customer and is_plans_plural.

• We’ve removed the SubscriptionPaymentRequiredMixin. Use @method_decorator("dispatch",
subscription_payment_required) instead.

MIDDLEWARE

• dj-stripe middleware doesn’t support multiple subscriptions.

SIGNALS

• Local custom signals are deprecated in favor of Stripe webhooks:

• cancelled -> WEBHOOK_SIGNALS[“customer.subscription.deleted”]

• card_changed -> WEBHOOK_SIGNALS[“customer.source.updated”]

• subscription_made -> WEBHOOK_SIGNALS[“customer.subscription.created”]

WEBHOOK EVENTS

• The Event Handlers designed by @wahuneke are the new way to handle events that come through webhooks.
Definitely take a look at event_handlers.py and webhooks.py.

EXCEPTIONS

• SubscriptionUpdateFailure and SubscriptionCancellationFailure exceptions are re-
moved. There should no longer be a case where they would have been useful. Catch native stripe errors in
their place instead.

1.25. History 117

https://github.com/kavdev/dj-stripe/blob/1.0.0/djstripe/decorators.py#L39

dj-stripe Documentation, Release 2.3.0

MODELS

CHARGE

• Charge.charge_created -> Charge.stripe_timestamp

• Charge.card_last_4 and Charge.card_kind are removed. Use Charge.source.last4 and
Charge.source.brand (if the source is a Card)

• Charge.invoice is no longer a foreign key to the Invoice model. Invoice now has a OneToOne relation-
ship with Charge. (Charge.invoice will still work, but will no longer be represented in the database).

CUSTOMER

• dj-stripe now supports test mode and live mode Customer objects concurrently (See #440). As a re-
sult, the <subscriber_model>.customer OneToOne reverse relationship is no longer a thing. You
should now instead add a customer property to your subscriber model that checks whether you’re in
live or test mode (see djstripe.settings.STRIPE_LIVE_MODE as an example) and grabs the customer from
<subscriber_model>.djstripe_customers with a simple livemode= filter.

• Customer no longer has a current_subscription property. We’ve added a subscription property
that should suit your needs.

• With the advent of multiple subscriptions, the behavior of Customer.subscribe() has changed. Before,
calling subscribe() when a customer was already subscribed to a plan would switch the customer to
the new plan with an option to prorate. Now calling subscribe() simply subscribes that customer to a new
plan in addition to it’s current subsription. Use Subscription.update() to change a subscription’s plan
instead.

• Customer.cancel_subscription() is removed. Use Subscription.cancel() instead.

• The Customer.update_plan_quantity() method is removed. Use Subscription.update() in-
stead.

• CustomerManager is now SubscriptionManager and works on the Subscription model instead
of the Customer model.

• Customer.has_valid_card() is now Customer.has_valid_source().

• Customer.update_card() now takes an id. If the id is not supplied, the default source is updated.

• Customer.stripe_customer property is removed. Use Customer.api_retrieve() instead.

• The at_period_end parameter of Customer.cancel_subscription() now actually follows the
DJSTRIPE_PRORATION_POLICY setting.

• Customer.card_fingerprint, Customer.card_last_4, Customer.card_kind,
Customer.card_exp_month, Customer.card_exp_year are all removed. Check Customer.
default_source (if it’s a Card) or one of the sources in Customer.sources (again, if it’s a Card)
instead.

• The invoice_id parameter of Customer.add_invoice_item is now named invoice and can be
either an Invoice object or the stripe_id of an Invoice.

EVENT

• Event.kind -> Event.type

• Removed Event.validated_message. Just check if the event is valid - no need to double check (we do
that for you)

118 Chapter 1. Contents

http://dj-stripe.readthedocs.org/en/latest/settings.html#djstripe-proration-policy-false

dj-stripe Documentation, Release 2.3.0

TRANSFER

• Removed Transfer.update_status()

• Removed Transfer.event

• TransferChargeFee is removed. It hasn’t been used in a while due to a broken API version. Use
Transfer.fee_details instead.

• Any fields that were in Transfer.summary no longer exist and are therefore deprecated (unused but not
removed from the database). Because of this, TransferManager now only aggregates total_sum

INVOICE

• Invoice.attempts -> Invoice.attempt_count

• InvoiceItems are no longer created when Invoices are synced. You must now sync InvoiceItems directly.

INVOICEITEM

• Removed InvoiceItem.line_type

PLAN

• Plan no longer has a stripe_plan property. Use api_retrieve() instead.

• Plan.currency no longer uses choices. Use the get_supported_currency_choices() utility and
create your own custom choices list instead.

• Plan interval choices are now in Plan.INTERVAL_TYPE_CHOICES

SUBSCRIPTION

• Subscription.is_period_current() now checks for a current trial end if the current period has
ended. This change means subscriptions extended with Subscription.extend() will now be seen as
valid.

MIGRATIONS

We’ll sync your current records with Stripe in a migration. It will take a while, but it’s the only way we can ensure
data integrity. There were some fields for which we needed to temporarily add placeholder defaults, so just make sure
you have a customer with ID 1 and a plan with ID 1 and you shouldn’t run into any issues (create dummy values for
these if need be and delete them after the migration).

BIG HUGE NOTE - DON’T OVERLOOK THIS

Warning: Subscription and InvoiceItem migration is not possible because old records don’t have Stripe IDs (so
we can’t sync them). Our approach is to delete all local subscription and invoiceitem objects and re-sync them
from Stripe.

We 100% recommend you create a backup of your database before performing this upgrade.

1.25. History 119

dj-stripe Documentation, Release 2.3.0

Other changes

• Postgres users now have access to the DJSTRIPE_USE_NATIVE_JSONFIELD setting. (Thanks @jleclanche)
#517, #523

• Charge receipts now take DJSTRIPE_SEND_INVOICE_RECEIPT_EMAILS into account (Thanks @r0fls)

• Clarified/modified installation documentation (Thanks @pydanny)

• Corrected and revised ANONYMOUS_USER_ERROR_MSG (Thanks @pydanny)

• Added fnmatching to SubscriptionPaymentMiddleware (Thanks @pydanny)

• SubscriptionPaymentMiddleware.process_request() functionality broken up into multiple
methods, making local customizations easier (Thanks @pydanny)

• Fully qualified events are now supported by event handlers as strings e.g. ‘customer.subscription.deleted’
(Thanks @lskillen) #316

• runtests now accepts positional arguments for declaring which tests to run (Thanks @lskillen) #317

• It is now possible to reprocess events in both code and the admin interface (Thanks @lskillen) #318

• The confirm page now checks that a valid card exists. (Thanks @scream4ik) #325

• Added support for viewing upcoming invoices (Thanks @lskillen) #320

• Event handler improvements and bugfixes (Thanks @lskillen) #321

• API list() method bugfixes (Thanks @lskillen) #322

• Added support for a custom webhook event handler (Thanks @lskillen) #323

• Django REST Framework contrib package improvements (Thanks @aleccool213) #334

• Added tax_percent to CreateSubscriptionSerializer (Thanks @aleccool213) #349

• Fixed incorrectly assigned application_fee in Charge calls (Thanks @kronok) #382

• Fixed bug caused by API change (Thanks @jessamynsmith) #353

• Added inline documentation to pretty much everything and enforced docsytle via flake8 (Thanks @aleccool213)

• Fixed outdated method call in template (Thanks @kandoio) #391

• Customer is correctly purged when subscriber is deleted, regardless of how the deletion happened (Thanks
@lskillen) #396

• Test webhooks are now properly captured and logged. No more bounced requests to Stripe! (Thanks
@jameshiew) #408

• CancelSubscriptionView redirect is now more flexible (Thanks @jleclanche) #418

• Customer.sync_cards() (Thanks @jleclanche) #438

• Many stability fixes, bugfixes, and code cleanup (Thanks @jleclanche)

• Support syncing canceled subscriptions (Thanks @jleclanche) #443

• Improved admin interface (Thanks @jleclanche with @jameshiew) #451

• Support concurrent TEST + LIVE API keys (Fix webhook event processing for both modes) (Thanks @jle-
clanche) #461

• Added Stripe Dashboard link to admin change panel (Thanks @jleclanche) #465

• Implemented Plan.amount_in_cents (Thanks @jleclanche) #466

• Implemented Subscription.reactivate() (Thanks @jleclanche) #470

120 Chapter 1. Contents

dj-stripe Documentation, Release 2.3.0

• Added Plan.human_readable_price (Thanks @jleclanche) #498

• (Re)attach the Subscriber when we find it’s id attached to a customer on Customer sync (Thanks @jleclanche)
#500

• Made API version configurable (with dj-stripe recommended default) (Thanks @lskillen) #504

1.25.20 0.8.0 (2015-12-30)

• better plan ordering documentation (Thanks @cjrh)

• added a confirmation page when choosing a subscription (Thanks @chrissmejia, @areski)

• setup.py reverse dependency fix (#258/#268) (Thanks @ticosax)

• Dropped official support for Django 1.7 (no code changes were made)

• Python 3.5 support, Django 1.9.1 support

• Migration improvements (Thanks @michi88)

• Fixed “Invoice matching query does not exist” bug (#263) (Thanks @mthornhill)

• Fixed duplicate content in account view (Thanks @areski)

1.25.21 0.7.0 (2015-09-22)

• dj-stripe now responds to the invoice.created event (Thanks @wahuneke)

• dj-stripe now cancels subscriptions and purges customers during sync if they were deleted from the stripe dash-
board (Thanks @unformatt)

• dj-stripe now checks for an active stripe subscription in the update_plan_quantity call (Thanks @ctren-
gove)

• Event processing is now handled by “event handlers” - functions outside of models that respond to various
event types and subtypes. Documentation on how to tie into the event handler system coming soon. (Thanks
@wahuneke)

• Experimental Python 3.5 support

• Support for Django 1.6 and lower is now officially gone.

• Much, much more!

1.25.22 0.6.0 (2015-07-12)

• Support for Django 1.6 and lower is now deprecated.

• Improved test harness now tests coverage and pep8

• SubscribeFormView and ChangePlanView no longer populate self.error with form errors

• InvoiceItems.plan can now be null (as it is with individual charges), resolving #140 (Thanks @awechsler and
@MichelleGlauser for help troubleshooting)

• Email templates are now packaged during distribution.

• sync_plans now takes an optional api_key

• 100% test coverage

1.25. History 121

dj-stripe Documentation, Release 2.3.0

• Stripe ID is now returned as part of each model’s str method (Thanks @areski)

• Customer model now stores card expiration month and year (Thanks @jpadilla)

• Ability to extend subscriptions (Thanks @TigerDX)

• Support for plan heirarchies (Thanks @chrissmejia)

• Rest API endpoints for Subscriptions [contrib] (Thanks @philippeluickx)

• Admin interface search by email funtionality is removed (#221) (Thanks @jpadilla)

1.25.23 0.5.0 (2015-05-25)

• Began deprecation of support for Django 1.6 and lower.

• Added formal support for Django 1.8.

• Removed the StripeSubscriptionSignupForm

• Removed djstripe.safe_settings. Settings are now all located in djstripe.settings

• DJSTRIPE_TRIAL_PERIOD_FOR_SUBSCRIBER_CALLBACK can no longer be a module string

• The sync_subscriber argument has been renamed from subscriber_model to subscriber

• Moved available currencies to the DJSTRIPE_CURRENCIES setting (Thanks @martinhill)

• Allow passing of extra parameters to stripe Charge API (Thanks @mthornhill)

• Support for all available arguments when syncing plans (Thanks @jamesbrobb)

• charge.refund() now returns the refunded charge object (Thanks @mthornhill)

• Charge model now has captured field and a capture method (Thanks @mthornhill)

• Subscription deleted webhook bugfix

• South migrations are now up to date (Thanks @Tyrdall)

1.25.24 0.4.0 (2015-04-05)

• Formal Python 3.3+/Django 1.7 Support (including migrations)

• Removed Python 2.6 from Travis CI build. (Thanks @audreyr)

• Dropped Django 1.4 support. (Thanks @audreyr)

• Deprecated the djstripe.forms.StripeSubscriptionSignupForm. Making this form work easily
with both dj-stripe and django-allauth required too much abstraction. It will be removed in the 0.5.0
release.

• Add the ability to add invoice items for a customer (Thanks @kavdev)

• Add the ability to use a custom customer model (Thanks @kavdev)

• Added setting to disable Invoice receipt emails (Thanks Chris Halpert)

• Enable proration when customer upgrades plan, and pass proration policy and cancellation at period end for
upgrades in settings. (Thanks Yasmine Charif)

• Removed the redundant context processor. (Thanks @kavdev)

• Fixed create a token call in change_card.html (Thanks @dollydagr)

• Fix charge.dispute.closed typo. (Thanks @ipmb)

122 Chapter 1. Contents

dj-stripe Documentation, Release 2.3.0

• Fix contributing docs formatting. (Thanks @audreyr)

• Fix subscription canceled_at_period_end field sync on plan upgrade (Thanks @nigma)

• Remove “account” bug in Middleware (Thanks @sromero84)

• Fix correct plan selection on subscription in subscribe_form template. (Thanks Yasmine Charif)

• Fix subscription status in account, _subscription_status, and cancel_subscription templates. (Thanks Yasmine
Charif)

• Now using user.get_username() instead of user.username, to support custom User models. (Thanks
@shvechikov)

• Update remaining DOM Ids for Bootstrap 3. (Thanks Yasmine Charif)

• Update publish command in setup.py. (Thanks @pydanny)

• Explicitly specify tox’s virtual environment names. (Thanks @audreyr)

• Manually call django.setup() to populate apps registry. (Thanks @audreyr)

1.25.25 0.3.5 (2014-05-01)

• Fixed djstripe_init_customers management command so it works with custom user models.

1.25.26 0.3.4 (2014-05-01)

• Clarify documentation for redirects on app_name.

• If settings.DEBUG is True, then django-debug-toolbar is exempt from redirect to subscription form.

• Use collections.OrderedDict to ensure that plans are listed in order of price.

• Add ordereddict library to support Python 2.6 users.

• Switch from __unicode__ to __str__ methods on models to better support Python 3.

• Add python_2_unicode_compatible decorator to Models.

• Check for PY3 so the unicode(self.user) in models.Customer doesn’t blow up in Python 3.

1.25.27 0.3.3 (2014-04-24)

• Increased the extendability of the views by removing as many hard-coded URLs as possible and replacing them
with success_url and other attributes/methods.

• Added single unit purchasing to the cookbook

1.25.28 0.3.2 (2014-01-16)

• Made Yasmine Charif a core committer

• Take into account trial days in a subscription plan (Thanks Yasmine Charif)

• Correct invoice period end value (Thanks Yasmine Charif)

• Make plan cancellation and plan change consistently not prorating (Thanks Yasmine Charif)

• Fix circular import when ACCOUNT_SIGNUP_FORM_CLASS is defined (Thanks Dustin Farris)

1.25. History 123

dj-stripe Documentation, Release 2.3.0

• Add send e-mail receipt action in charges admin panel (Thanks Buddy Lindsay)

• Add created field to all ModelAdmins to help with internal auditing (Thanks Kulbir Singh)

1.25.29 0.3.1 (2013-11-14)

• Cancellation fix (Thanks Yasmine Charif)

• Add setup.cfg for wheel generation (Thanks Charlie Denton)

1.25.30 0.3.0 (2013-11-12)

• Fully tested against Django 1.6, 1.5, and 1.4

• Fix boolean default issue in models (from now on they are all default to False).

• Replace duplicated code with djstripe.utils.user_has_active_subscription.

1.25.31 0.2.9 (2013-09-06)

• Cancellation added to views.

• Support for kwargs on charge and invoice fetching.

• def charge() now supports send_receipt flag, default to True.

• Fixed templates to work with Bootstrap 3.0.0 column design.

1.25.32 0.2.8 (2013-09-02)

• Improved usage documentation.

• Corrected order of fields in StripeSubscriptionSignupForm.

• Corrected transaction history template layout.

• Updated models to take into account when settings.USE_TZ is disabled.

1.25.33 0.2.7 (2013-08-24)

• Add handy rest_framework permission class.

• Fixing attribution for django-stripe-payments.

• Add new status to Invoice model.

1.25.34 0.2.6 (2013-08-20)

• Changed name of division tag to djdiv.

• Added safe_setting.py module to handle edge cases when working with custom user models.

• Added cookbook page in the documentation.

124 Chapter 1. Contents

dj-stripe Documentation, Release 2.3.0

1.25.35 0.2.5 (2013-08-18)

• Fixed bug in initial checkout

• You can’t purchase the same plan that you currently have.

1.25.36 0.2.4 (2013-08-18)

• Recursive package finding.

1.25.37 0.2.3 (2013-08-16)

• Fix packaging so all submodules are loaded

1.25.38 0.2.2 (2013-08-15)

• Added Registration + Subscription form

1.25.39 0.2.1 (2013-08-12)

• Fixed a bug on CurrentSubscription tests

• Improved usage documentation

• Added to migration from other tools documentation

1.25.40 0.2.0 (2013-08-12)

• Cancellation of plans now works.

• Upgrades and downgrades of plans now work.

• Changing of cards now works.

• Added breadcrumbs to improve navigation.

• Improved installation instructions.

• Consolidation of test instructions.

• Minor improvement to django-stripe-payments documentation

• Added coverage.py to test process.

• Added south migrations.

• Fixed the subscription_payment_required function-based view decorator.

• Removed unnecessary django-crispy-forms

1.25.41 0.1.7 (2013-08-08)

• Middleware excepts all of the djstripe namespaced URLs. This way people can pay.

1.25. History 125

dj-stripe Documentation, Release 2.3.0

1.25.42 0.1.6 (2013-08-08)

• Fixed a couple template paths

• Fixed the manifest so we include html, images.

1.25.43 0.1.5 (2013-08-08)

• Fixed the manifest so we include html, css, js, images.

1.25.44 0.1.4 (2013-08-08)

• Change PaymentRequiredMixin to SubscriptionPaymentRequiredMixin

• Add subscription_payment_required function-based view decorator

• Added SubscriptionPaymentRedirectMiddleware

• Much nicer accounts view display

• Much improved subscription form display

• Payment plans can have decimals

• Payment plans can have custom images

1.25.45 0.1.3 (2013-08-7)

• Added account view

• Added Customer.get_or_create method

• Added djstripe_sync_customers management command

• sync file for all code that keeps things in sync with stripe

• Use client-side JavaScript to get history data asynchronously

• More user friendly action views

1.25.46 0.1.2 (2013-08-6)

• Admin working

• Better publish statement

• Fix dependencies

1.25.47 0.1.1 (2013-08-6)

• Ported internals from django-stripe-payments

• Began writing the views

• Travis-CI

• All tests passing on Python 2.7 and 3.3

• All tests passing on Django 1.4 and 1.5

126 Chapter 1. Contents

dj-stripe Documentation, Release 2.3.0

• Began model cleanup

• Better form

• Provide better response from management commands

1.25.48 0.1.0 (2013-08-5)

• First release on PyPI.

1.26 Support

No content. . . yet

1.27 Release Process

Contents

• Release Process

– Squash migrations

– Tag + package squashed migrations as rc package (optional)

– Prepare changes for the release commit

– Create signed release commit tag

– Update/create stable branch

– Configure readthedocs

– Release on pypi

Attention: Before MAJOR or MINOR releases:

• Review deprecation notes (eg search for “deprecated”) and remove deprecated features as appropriate

• Squash migrations (ONLY on unreleased migrations) - see below

1.27.1 Squash migrations

If there’s more than one unreleased migration on master consider squashing them with squashmigrations, im-
mediately before tagging the new release:

• Create a new squashed migration with ./manage.py squashmigrations (only squash migrations that
have never been in a tagged release)

• Commit the squashed migration on master with a commit message like “Squash x.y.0dev migrations” (this will
allow users who running master to safely upgrade, see note below about rc package)

• Then transition the squashed migration to a normal migration as per Django:

1.26. Support 127

https://github.com/dj-stripe/dj-stripe/releases/tag/1.0.0

dj-stripe Documentation, Release 2.3.0

– Delete all the migration files it replaces

– Update all migrations that depend on the deleted migrations to depend on the squashed migration
instead

– Remove the replaces attribute in the Migration class of the squashed migration (this is how Django
tells that it is a squashed migration)

• Commit these changes to master with a message like “Transition squashed migration to normal migration”

• Then do the normal release process - bump version as another commit and tag the release

See https://docs.djangoproject.com/en/dev/topics/migrations/#migration-squashing

1.27.2 Tag + package squashed migrations as rc package (optional)

As a convenience to users who are running master, an rc version can be created to package the squashed migration.

To do this, immediately after the “Squash x.y.0dev migrations” commit, follow the steps below but with a x.y.0rc0
version to tag and package a rc version.

Users who have been using the x.y.0dev code from master can then run the squashed migrations migrations before
upgrading to >=x.y.0.

The simplest way to do this is to pip install dj-stripe==x.y.0rc0 and migrate, or alternatively check
out the x.y.0rc0 git tag and migrate.

1.27.3 Prepare changes for the release commit

• Choose your version number (using https://semver.org/)

– if there’s a new migration, it should be a MAJOR.0.0 or MAJOR.MINOR.0 version.

• Review and update HISTORY.rst

– Add a section for this release version

– Set date on this release version

– Check that summary of feature/fixes is since the last release is up to date

• Update package version number in setup.cfg

• Review and update supported API version in README.rst (this is the most recent Stripe account version
tested against, not DEFAULT_STRIPE_API_VERSION)

• git add to stage these changes

1.27.4 Create signed release commit tag

Note: Before doing this you should have a GPG key set up on github

If you don’t have a GPG key already, one method is via https://keybase.io/ , and then add it to your github profile.

• Create a release tag with the above staged changes (where $VERSION is the version number to be released:

$ git commit -m "Release $VERSION"
$ git tag -fsm "Release $VERSION" $VERSION

128 Chapter 1. Contents

https://docs.djangoproject.com/en/dev/topics/migrations/#migration-squashing
https://semver.org/
https://keybase.io/

dj-stripe Documentation, Release 2.3.0

This can be expressed as a bash function as follows:

git_release() { git commit -m "Release $1" && git tag -fsm "Release $1" $1; }

• Push the commit and tag:

$ git push --follow-tags

1.27.5 Update/create stable branch

Push these changes to the appropriate stable/MAJOR.MINOR version branch (eg stable/2.0) if they’re not
already - note that this will trigger the readthedocs build

1.27.6 Configure readthedocs

If this is this is a new stable branch then do the following on https://readthedocs.org/dashboard/dj-stripe/versions/

• Find the new stable/MAJOR.MINOR branch name and mark it as active (and then save).

1.27.7 Release on pypi

See https://packaging.python.org/tutorials/packaging-projects/#generating-distribution-archives

1.27. Release Process 129

https://readthedocs.org/dashboard/dj-stripe/versions/
https://packaging.python.org/tutorials/packaging-projects/#generating-distribution-archives

dj-stripe Documentation, Release 2.3.0

130 Chapter 1. Contents

CHAPTER 2

Constraints

1. For stripe.com only

2. Only use or support well-maintained third-party libraries

3. For modern Python and Django

131

dj-stripe Documentation, Release 2.3.0

132 Chapter 2. Constraints

Index

A
Account (class in djstripe.models), 85
account_already_exists

(djstripe.enums.ApiErrorCode attribute),
17

account_closed (djstripe.enums.PayoutFailureCode
attribute), 26

account_country_invalid_address
(djstripe.enums.ApiErrorCode attribute),
17

account_frozen (djstripe.enums.PayoutFailureCode
attribute), 26

account_invalid (djstripe.enums.ApiErrorCode at-
tribute), 17

account_number_invalid
(djstripe.enums.ApiErrorCode attribute),
17

AccountType (class in djstripe.enums), 19
ach_credit_transfer (djstripe.enums.SourceType

attribute), 30
ach_debit (djstripe.enums.SourceType attribute), 30
active (djstripe.enums.SubscriptionStatus attribute),

32
active() (djstripe.managers.SubscriptionManager

method), 33
active_plan_summary()

(djstripe.managers.SubscriptionManager
method), 33

active_subscriptions (djstripe.models.Customer
attribute), 43

add_card() (djstripe.models.Customer method), 42
add_coupon() (djstripe.models.Customer method), 44
add_invoice_item() (djstripe.models.Customer

method), 42
add_payment_method() (djstripe.models.Customer

method), 43
adjustment (djstripe.enums.BalanceTransactionType

attribute), 20
advance (djstripe.enums.BalanceTransactionType at-

tribute), 20
advance_funding (djstripe.enums.BalanceTransactionType

attribute), 20
alipay (djstripe.enums.SourceType attribute), 30
alipay_account (djstripe.enums.LegacySourceType

attribute), 30
alipay_upgrade_required

(djstripe.enums.ApiErrorCode attribute),
17

AmericanExpress (djstripe.enums.CardBrand
attribute), 22

amount_in_cents (djstripe.models.Plan attribute),
72

amount_too_large (djstripe.enums.ApiErrorCode
attribute), 17

amount_too_small (djstripe.enums.ApiErrorCode
attribute), 17

android_pay (djstripe.enums.CardTokenizationMethod
attribute), 22

api_key_expired (djstripe.enums.ApiErrorCode at-
tribute), 17

api_list() (djstripe.models.Account class method),
86

api_list() (djstripe.models.ApplicationFee class
method), 87

api_list() (djstripe.models.BalanceTransaction
class method), 35

api_list() (djstripe.models.BankAccount class
method), 56

api_list() (djstripe.models.Card class method), 57
api_list() (djstripe.models.Charge class method), 37
api_list() (djstripe.models.CountrySpec class

method), 88
api_list() (djstripe.models.Coupon class method),

62
api_list() (djstripe.models.Customer class method),

40
api_list() (djstripe.models.Dispute class method),

45
api_list() (djstripe.models.Event class method), 46

133

dj-stripe Documentation, Release 2.3.0

api_list() (djstripe.models.FileUpload class
method), 47

api_list() (djstripe.models.Invoice class method), 67
api_list() (djstripe.models.InvoiceItem class

method), 70
api_list() (djstripe.models.PaymentIntent class

method), 51
api_list() (djstripe.models.PaymentMethod class

method), 59
api_list() (djstripe.models.Payout class method), 49
api_list() (djstripe.models.Plan class method), 72
api_list() (djstripe.models.Product class method),

53
api_list() (djstripe.models.Refund class method), 54
api_list() (djstripe.models.ScheduledQueryRun

class method), 92
api_list() (djstripe.models.Source class method), 61
api_list() (djstripe.models.Subscription class

method), 75
api_list() (djstripe.models.SubscriptionItem class

method), 78
api_list() (djstripe.models.TaxRate class method),

79
api_list() (djstripe.models.Transfer class method),

90
api_list() (djstripe.models.TransferReversal class

method), 91
api_list() (djstripe.models.UpcomingInvoice class

method), 83
api_list() (djstripe.models.UsageRecord class

method), 84
api_retrieve() (djstripe.models.Account method),

86
api_retrieve() (djstripe.models.ApplicationFee

method), 88
api_retrieve() (djstripe.models.BalanceTransaction

method), 35
api_retrieve() (djstripe.models.BankAccount

method), 56
api_retrieve() (djstripe.models.Card method), 58
api_retrieve() (djstripe.models.Charge method),

38
api_retrieve() (djstripe.models.CountrySpec

method), 89
api_retrieve() (djstripe.models.Coupon method),

63
api_retrieve() (djstripe.models.Customer method),

40
api_retrieve() (djstripe.models.Dispute method),

45
api_retrieve() (djstripe.models.Event method), 46
api_retrieve() (djstripe.models.FileUpload

method), 48
api_retrieve() (djstripe.models.Invoice method),

67
api_retrieve() (djstripe.models.InvoiceItem

method), 70
api_retrieve() (djstripe.models.PaymentIntent

method), 52
api_retrieve() (djstripe.models.PaymentMethod

method), 59
api_retrieve() (djstripe.models.Payout method),

49
api_retrieve() (djstripe.models.Plan method), 72
api_retrieve() (djstripe.models.Product method),

53
api_retrieve() (djstripe.models.Refund method),

54
api_retrieve() (djstripe.models.ScheduledQueryRun

method), 93
api_retrieve() (djstripe.models.Source method), 61
api_retrieve() (djstripe.models.Subscription

method), 75
api_retrieve() (djstripe.models.SubscriptionItem

method), 78
api_retrieve() (djstripe.models.TaxRate method),

79
api_retrieve() (djstripe.models.Transfer method),

90
api_retrieve() (djstripe.models.TransferReversal

method), 91
api_retrieve() (djstripe.models.UpcomingInvoice

method), 83
api_retrieve() (djstripe.models.UsageRecord

method), 84
ApiErrorCode (class in djstripe.enums), 17
apple_pay (djstripe.enums.CardTokenizationMethod

attribute), 22
application_fee (djstripe.enums.BalanceTransactionType

attribute), 20
application_fee_refund

(djstripe.enums.BalanceTransactionType
attribute), 20

ApplicationFee (class in djstripe.models), 87
attach() (djstripe.models.PaymentMethod class

method), 59
auto (djstripe.enums.SubmitTypeStatus attribute), 32
automatic (djstripe.enums.CaptureMethod attribute),

21
automatic (djstripe.enums.ConfirmationMethod at-

tribute), 23
available (djstripe.enums.BalanceTransactionStatus

attribute), 20

B
balance_insufficient

(djstripe.enums.ApiErrorCode attribute),
17

134 Index

dj-stripe Documentation, Release 2.3.0

BalanceTransaction (class in djstripe.models), 34
BalanceTransactionStatus (class in

djstripe.enums), 20
BalanceTransactionType (class in

djstripe.enums), 20
bancontact (djstripe.enums.SourceType attribute), 30
bank_account (djstripe.enums.LegacySourceType at-

tribute), 30
bank_account (djstripe.enums.PayoutType attribute),

27
bank_account_exists

(djstripe.enums.ApiErrorCode attribute),
17

bank_account_restricted
(djstripe.enums.PayoutFailureCode attribute),
26

bank_account_unusable
(djstripe.enums.ApiErrorCode attribute),
17

bank_account_unverified
(djstripe.enums.ApiErrorCode attribute),
17

bank_cannot_process
(djstripe.enums.DisputeReason attribute),
24

bank_ownership_changed
(djstripe.enums.PayoutFailureCode attribute),
26

BankAccount (class in djstripe.models), 55
BankAccountHolderType (class in djstripe.enums),

21
BankAccountStatus (class in djstripe.enums), 21
bitcoin (djstripe.enums.SourceType attribute), 30
bitcoin_receiver (djstripe.enums.LegacySourceType

attribute), 30
bitcoin_upgrade_required

(djstripe.enums.ApiErrorCode attribute),
17

book (djstripe.enums.SubmitTypeStatus attribute), 32
BusinessType (class in djstripe.enums), 21

C
can_charge() (djstripe.models.Customer method), 43
cancel() (djstripe.models.Subscription method), 76
canceled (djstripe.enums.IntentStatus attribute), 25
canceled (djstripe.enums.PaymentIntentStatus at-

tribute), 26
canceled (djstripe.enums.PayoutStatus attribute), 27
canceled (djstripe.enums.RefundStatus attribute), 31
canceled (djstripe.enums.ScheduledQueryRunStatus

attribute), 29
canceled (djstripe.enums.SetupIntentStatus attribute),

26
canceled (djstripe.enums.SourceStatus attribute), 29

canceled (djstripe.enums.SubscriptionStatus at-
tribute), 32

canceled() (djstripe.managers.SubscriptionManager
method), 33

canceled_during()
(djstripe.managers.SubscriptionManager
method), 33

canceled_plan_summary_for()
(djstripe.managers.SubscriptionManager
method), 33

capture() (djstripe.models.Charge method), 38
CaptureMethod (class in djstripe.enums), 21
Card (class in djstripe.models), 56
card (djstripe.enums.LegacySourceType attribute), 30
card (djstripe.enums.PayoutType attribute), 27
card (djstripe.enums.SourceType attribute), 30
card_declined (djstripe.enums.ApiErrorCode

attribute), 17
card_present (djstripe.enums.SourceType attribute),

30
CardBrand (class in djstripe.enums), 22
CardCheckResult (class in djstripe.enums), 22
CardFundingType (class in djstripe.enums), 22
CardTokenizationMethod (class in

djstripe.enums), 22
category (djstripe.models.Event attribute), 46
Charge (class in djstripe.models), 36
charge (djstripe.enums.BalanceTransactionType

attribute), 20
charge() (djstripe.models.Customer method), 41
charge_already_captured

(djstripe.enums.ApiErrorCode attribute),
17

charge_already_refunded
(djstripe.enums.ApiErrorCode attribute),
17

charge_automatically
(djstripe.enums.InvoiceCollectionMethod
attribute), 25

charge_disputed (djstripe.enums.ApiErrorCode at-
tribute), 17

charge_exceeds_source_limit
(djstripe.enums.ApiErrorCode attribute),
17

charge_expired_for_capture
(djstripe.enums.ApiErrorCode attribute),
17

charge_refunded (djstripe.enums.DisputeStatus at-
tribute), 24

chargeable (djstripe.enums.SourceStatus attribute),
29

ChargeManager (class in djstripe.managers), 33
ChargeStatus (class in djstripe.enums), 23
choices (djstripe.enums.AccountType attribute), 19

Index 135

dj-stripe Documentation, Release 2.3.0

choices (djstripe.enums.ApiErrorCode attribute), 17
choices (djstripe.enums.BalanceTransactionStatus at-

tribute), 20
choices (djstripe.enums.BalanceTransactionType at-

tribute), 20
choices (djstripe.enums.BankAccountHolderType at-

tribute), 21
choices (djstripe.enums.BankAccountStatus attribute),

21
choices (djstripe.enums.BusinessType attribute), 21
choices (djstripe.enums.CaptureMethod attribute), 21
choices (djstripe.enums.CardBrand attribute), 22
choices (djstripe.enums.CardCheckResult attribute),

22
choices (djstripe.enums.CardFundingType attribute),

22
choices (djstripe.enums.CardTokenizationMethod at-

tribute), 22
choices (djstripe.enums.ChargeStatus attribute), 23
choices (djstripe.enums.ConfirmationMethod at-

tribute), 23
choices (djstripe.enums.CouponDuration attribute),

23
choices (djstripe.enums.CustomerTaxExempt at-

tribute), 23
choices (djstripe.enums.DisputeReason attribute), 24
choices (djstripe.enums.DisputeStatus attribute), 24
choices (djstripe.enums.FileUploadPurpose attribute),

24
choices (djstripe.enums.FileUploadType attribute), 25
choices (djstripe.enums.IntentStatus attribute), 25
choices (djstripe.enums.IntentUsage attribute), 25
choices (djstripe.enums.InvoiceCollectionMethod at-

tribute), 25
choices (djstripe.enums.LegacySourceType attribute),

30
choices (djstripe.enums.PaymentIntentStatus at-

tribute), 26
choices (djstripe.enums.PayoutFailureCode attribute),

26
choices (djstripe.enums.PayoutMethod attribute), 27
choices (djstripe.enums.PayoutStatus attribute), 27
choices (djstripe.enums.PayoutType attribute), 27
choices (djstripe.enums.PlanAggregateUsage at-

tribute), 27
choices (djstripe.enums.PlanBillingScheme attribute),

28
choices (djstripe.enums.PlanInterval attribute), 28
choices (djstripe.enums.PlanTiersMode attribute), 28
choices (djstripe.enums.PlanUsageType attribute), 28
choices (djstripe.enums.ProductType attribute), 29
choices (djstripe.enums.RefundFailureReason at-

tribute), 30
choices (djstripe.enums.RefundReason attribute), 31

choices (djstripe.enums.RefundStatus attribute), 31
choices (djstripe.enums.ScheduledQueryRunStatus at-

tribute), 29
choices (djstripe.enums.SetupIntentStatus attribute),

26
choices (djstripe.enums.SourceCodeVerificationStatus

attribute), 31
choices (djstripe.enums.SourceFlow attribute), 29
choices (djstripe.enums.SourceRedirectFailureReason

attribute), 32
choices (djstripe.enums.SourceRedirectStatus at-

tribute), 32
choices (djstripe.enums.SourceStatus attribute), 29
choices (djstripe.enums.SourceType attribute), 30
choices (djstripe.enums.SourceUsage attribute), 31
choices (djstripe.enums.SubmitTypeStatus attribute),

32
choices (djstripe.enums.SubscriptionStatus attribute),

32
churn() (djstripe.managers.SubscriptionManager

method), 33
clear_expired_idempotency_keys()

(djstripe.utils method), 99
code_verification (djstripe.enums.SourceFlow at-

tribute), 29
company (djstripe.enums.BankAccountHolderType at-

tribute), 21
company (djstripe.enums.BusinessType attribute), 21
ConfirmationMethod (class in djstripe.enums), 23
connect_collection_transfer

(djstripe.enums.BalanceTransactionType
attribute), 20

consumed (djstripe.enums.SourceStatus attribute), 29
convert_tstamp() (djstripe.utils method), 99
could_not_process

(djstripe.enums.PayoutFailureCode attribute),
26

country_unsupported
(djstripe.enums.ApiErrorCode attribute),
17

CountrySpec (class in djstripe.models), 88
Coupon (class in djstripe.models), 62
coupon_expired (djstripe.enums.ApiErrorCode at-

tribute), 17
CouponDuration (class in djstripe.enums), 23
create_token() (djstripe.models.Card class

method), 58
credit (djstripe.enums.CardFundingType attribute), 22
credit_not_processed

(djstripe.enums.DisputeReason attribute),
24

credits (djstripe.models.Customer attribute), 40
csv (djstripe.enums.FileUploadType attribute), 25
custom (djstripe.enums.AccountType attribute), 19

136 Index

dj-stripe Documentation, Release 2.3.0

Customer (class in djstripe.models), 39
customer (djstripe.models.Event attribute), 47
customer_initiated

(djstripe.enums.DisputeReason attribute),
24

customer_max_subscriptions
(djstripe.enums.ApiErrorCode attribute),
17

customer_payment_methods
(djstripe.models.Customer attribute), 40

CustomerTaxExempt (class in djstripe.enums), 23

D
day (djstripe.enums.PlanInterval attribute), 28
debit (djstripe.enums.CardFundingType attribute), 22
debit_not_authorized

(djstripe.enums.DisputeReason attribute),
24

debit_not_authorized
(djstripe.enums.PayoutFailureCode attribute),
26

declined (djstripe.enums.SourceRedirectFailureReason
attribute), 32

detach() (djstripe.models.PaymentMethod method),
59

detach() (djstripe.models.Source method), 61
DinersClub (djstripe.enums.CardBrand attribute), 22
Discover (djstripe.enums.CardBrand attribute), 22
Dispute (class in djstripe.models), 44
dispute_evidence (djstripe.enums.FileUploadPurpose

attribute), 24
disputed (djstripe.models.Charge attribute), 38
DisputeReason (class in djstripe.enums), 24
DisputeStatus (class in djstripe.enums), 24
docx (djstripe.enums.FileUploadType attribute), 25
donate (djstripe.enums.SubmitTypeStatus attribute), 32
duplicate (djstripe.enums.DisputeReason attribute),

24
duplicate (djstripe.enums.RefundReason attribute),

31
during() (djstripe.managers.ChargeManager

method), 33
during() (djstripe.managers.TransferManager

method), 33

E
email_invalid (djstripe.enums.ApiErrorCode

attribute), 17
eps (djstripe.enums.SourceType attribute), 30
errored (djstripe.enums.BankAccountStatus attribute),

21
Event (class in djstripe.models), 45
exempt (djstripe.enums.CustomerTaxExempt attribute),

23

expired_card (djstripe.enums.ApiErrorCode at-
tribute), 17

expired_or_canceled_card
(djstripe.enums.RefundFailureReason at-
tribute), 30

expired_uncaptured_charge
(djstripe.enums.RefundReason attribute),
31

express (djstripe.enums.AccountType attribute), 19
extend() (djstripe.models.Subscription method), 76

F
fail (djstripe.enums.CardCheckResult attribute), 22
failed (djstripe.enums.ChargeStatus attribute), 23
failed (djstripe.enums.PayoutStatus attribute), 27
failed (djstripe.enums.RefundStatus attribute), 31
failed (djstripe.enums.ScheduledQueryRunStatus at-

tribute), 29
failed (djstripe.enums.SourceCodeVerificationStatus

attribute), 31
failed (djstripe.enums.SourceRedirectStatus attribute),

32
failed (djstripe.enums.SourceStatus attribute), 29
FileUpload (class in djstripe.models), 47
FileUploadPurpose (class in djstripe.enums), 24
FileUploadType (class in djstripe.enums), 25
forever (djstripe.enums.CouponDuration attribute),

23
fraudulent (djstripe.enums.DisputeReason attribute),

24
fraudulent (djstripe.enums.RefundReason attribute),

31
from_request() (djstripe.models.WebhookEventTrigger

class method), 94

G
general (djstripe.enums.DisputeReason attribute), 24
get_connected_account_from_token()

(djstripe.models.Account class method), 86
get_default_account() (djstripe.models.Account

class method), 86
get_friendly_currency_amount()

(djstripe.utils method), 99
get_or_create() (djstripe.models.Customer class

method), 40
get_or_create() (djstripe.models.Plan class

method), 72
get_stripe_dashboard_url()

(djstripe.models.Account method), 86
get_stripe_dashboard_url()

(djstripe.models.ApplicationFee method),
88

get_stripe_dashboard_url()
(djstripe.models.BalanceTransaction method),

Index 137

dj-stripe Documentation, Release 2.3.0

35
get_stripe_dashboard_url()

(djstripe.models.BankAccount method), 56
get_stripe_dashboard_url()

(djstripe.models.Card method), 58
get_stripe_dashboard_url()

(djstripe.models.Charge method), 38
get_stripe_dashboard_url()

(djstripe.models.CountrySpec method), 89
get_stripe_dashboard_url()

(djstripe.models.Coupon method), 63
get_stripe_dashboard_url()

(djstripe.models.Customer method), 40
get_stripe_dashboard_url()

(djstripe.models.Dispute method), 45
get_stripe_dashboard_url()

(djstripe.models.Invoice method), 67
get_stripe_dashboard_url()

(djstripe.models.InvoiceItem method), 70
get_stripe_dashboard_url()

(djstripe.models.PaymentIntent method),
52

get_stripe_dashboard_url()
(djstripe.models.PaymentMethod method),
59

get_stripe_dashboard_url()
(djstripe.models.Payout method), 49

get_stripe_dashboard_url()
(djstripe.models.Plan method), 72

get_stripe_dashboard_url()
(djstripe.models.Product method), 53

get_stripe_dashboard_url()
(djstripe.models.Refund method), 55

get_stripe_dashboard_url()
(djstripe.models.Source method), 61

get_stripe_dashboard_url()
(djstripe.models.Subscription method), 75

get_stripe_dashboard_url()
(djstripe.models.SubscriptionItem method),
78

get_stripe_dashboard_url()
(djstripe.models.TaxRate method), 79

get_stripe_dashboard_url()
(djstripe.models.Transfer method), 90

get_stripe_dashboard_url()
(djstripe.models.TransferReversal method),
91

get_stripe_dashboard_url()
(djstripe.models.UpcomingInvoice method), 83

get_stripe_dashboard_url()
(djstripe.models.UsageRecord method), 85

get_supported_currency_choices()
(djstripe.utils method), 99

giropay (djstripe.enums.SourceType attribute), 30

good (djstripe.enums.ProductType attribute), 29
graduated (djstripe.enums.PlanTiersMode attribute),

28

H
handler() (djstripe.webhooks method), 16
handler_all() (djstripe.webhooks method), 16
has_active_subscription()

(djstripe.models.Customer method), 43
has_any_active_subscription()

(djstripe.models.Customer method), 43
has_valid_source() (djstripe.models.Customer

method), 43
human_readable (djstripe.models.Coupon attribute),

63
human_readable_amount (djstripe.models.Coupon

attribute), 63
human_readable_price (djstripe.models.Plan at-

tribute), 72

I
ideal (djstripe.enums.SourceType attribute), 30
idempotency_key_in_use

(djstripe.enums.ApiErrorCode attribute),
17

identity_document
(djstripe.enums.FileUploadPurpose attribute),
24

in_transit (djstripe.enums.PayoutStatus attribute),
27

incomplete (djstripe.enums.SubscriptionStatus
attribute), 32

incomplete_expired
(djstripe.enums.SubscriptionStatus attribute),
32

incorrect_account_details
(djstripe.enums.DisputeReason attribute),
24

incorrect_address (djstripe.enums.ApiErrorCode
attribute), 17

incorrect_cvc (djstripe.enums.ApiErrorCode
attribute), 17

incorrect_number (djstripe.enums.ApiErrorCode
attribute), 17

incorrect_zip (djstripe.enums.ApiErrorCode
attribute), 18

individual (djstripe.enums.BankAccountHolderType
attribute), 21

individual (djstripe.enums.BusinessType attribute),
21

instant (djstripe.enums.PayoutMethod attribute), 27
instant_payouts_unsupported

(djstripe.enums.ApiErrorCode attribute),
18

138 Index

dj-stripe Documentation, Release 2.3.0

insufficient_funds
(djstripe.enums.DisputeReason attribute),
24

insufficient_funds
(djstripe.enums.PayoutFailureCode attribute),
27

IntentStatus (class in djstripe.enums), 25
IntentUsage (class in djstripe.enums), 25
invalid_account_number

(djstripe.enums.PayoutFailureCode attribute),
27

invalid_card_type (djstripe.enums.ApiErrorCode
attribute), 18

invalid_charge_amount
(djstripe.enums.ApiErrorCode attribute),
18

invalid_currency (djstripe.enums.PayoutFailureCode
attribute), 27

invalid_cvc (djstripe.enums.ApiErrorCode at-
tribute), 18

invalid_expiry_month
(djstripe.enums.ApiErrorCode attribute),
18

invalid_expiry_year
(djstripe.enums.ApiErrorCode attribute),
18

invalid_number (djstripe.enums.ApiErrorCode at-
tribute), 18

invalid_source_usage
(djstripe.enums.ApiErrorCode attribute),
18

invalid_swipe_data
(djstripe.enums.ApiErrorCode attribute),
18

Invoice (class in djstripe.models), 63
invoice_no_customer_line_items

(djstripe.enums.ApiErrorCode attribute),
18

invoice_no_subscription_line_items
(djstripe.enums.ApiErrorCode attribute), 18

invoice_not_editable
(djstripe.enums.ApiErrorCode attribute),
18

invoice_upcoming_none
(djstripe.enums.ApiErrorCode attribute),
18

InvoiceCollectionMethod (class in
djstripe.enums), 25

InvoiceItem (class in djstripe.models), 69
invoiceitems (djstripe.models.UpcomingInvoice at-

tribute), 83
invoke_webhook_handlers()

(djstripe.models.Event method), 46
is_period_current()

(djstripe.models.Subscription method), 76
is_status_current()

(djstripe.models.Subscription method), 77
is_status_temporarily_current()

(djstripe.models.Subscription method), 77
is_test_event (djstripe.models.WebhookEventTrigger

attribute), 94
is_valid() (djstripe.models.Subscription method), 77
issuing_authorization_hold

(djstripe.enums.BalanceTransactionType
attribute), 20

issuing_authorization_release
(djstripe.enums.BalanceTransactionType
attribute), 20

issuing_transaction
(djstripe.enums.BalanceTransactionType
attribute), 20

J
JCB (djstripe.enums.CardBrand attribute), 22
jpg (djstripe.enums.FileUploadType attribute), 25
json_body (djstripe.models.WebhookEventTrigger at-

tribute), 94

L
last_during_period

(djstripe.enums.PlanAggregateUsage at-
tribute), 27

last_ever (djstripe.enums.PlanAggregateUsage at-
tribute), 27

legacy_cards (djstripe.models.Customer attribute),
40

LegacySourceType (class in djstripe.enums), 30
licensed (djstripe.enums.PlanUsageType attribute),

28
livemode_mismatch (djstripe.enums.ApiErrorCode

attribute), 18
lost (djstripe.enums.DisputeStatus attribute), 24
lost_or_stolen_card

(djstripe.enums.RefundFailureReason at-
tribute), 30

M
manual (djstripe.enums.CaptureMethod attribute), 21
manual (djstripe.enums.ConfirmationMethod attribute),

23
MasterCard (djstripe.enums.CardBrand attribute), 22
max (djstripe.enums.PlanAggregateUsage attribute), 28
metered (djstripe.enums.PlanUsageType attribute), 28
missing (djstripe.enums.ApiErrorCode attribute), 18
month (djstripe.enums.PlanInterval attribute), 28

Index 139

dj-stripe Documentation, Release 2.3.0

N
needs_response (djstripe.enums.DisputeStatus at-

tribute), 24
network_cost (djstripe.enums.BalanceTransactionType

attribute), 20
new (djstripe.enums.BankAccountStatus attribute), 21
no_account (djstripe.enums.PayoutFailureCode at-

tribute), 27
none (djstripe.enums.CustomerTaxExempt attribute), 23
none (djstripe.enums.SourceFlow attribute), 29
not_allowed_on_standard_account

(djstripe.enums.ApiErrorCode attribute),
18

not_required (djstripe.enums.SourceRedirectStatus
attribute), 32

O
off_session (djstripe.enums.IntentUsage attribute),

25
on_session (djstripe.enums.IntentUsage attribute), 25
once (djstripe.enums.CouponDuration attribute), 23
order_creation_failed

(djstripe.enums.ApiErrorCode attribute),
18

order_required_settings
(djstripe.enums.ApiErrorCode attribute),
18

order_status_invalid
(djstripe.enums.ApiErrorCode attribute),
18

order_upstream_timeout
(djstripe.enums.ApiErrorCode attribute),
18

out_of_inventory (djstripe.enums.ApiErrorCode
attribute), 18

P
p24 (djstripe.enums.SourceType attribute), 30
paid (djstripe.enums.PayoutStatus attribute), 27
paid_totals_for()

(djstripe.managers.ChargeManager method),
33

paid_totals_for()
(djstripe.managers.TransferManager method),
33

paper_check (djstripe.enums.SourceType attribute),
30

parameter_invalid_empty
(djstripe.enums.ApiErrorCode attribute),
18

parameter_invalid_integer
(djstripe.enums.ApiErrorCode attribute),
18

parameter_invalid_string_blank
(djstripe.enums.ApiErrorCode attribute),
18

parameter_invalid_string_empty
(djstripe.enums.ApiErrorCode attribute),
18

parameter_missing (djstripe.enums.ApiErrorCode
attribute), 18

parameter_unknown (djstripe.enums.ApiErrorCode
attribute), 18

parameters_exclusive
(djstripe.enums.ApiErrorCode attribute),
18

parts (djstripe.models.Event attribute), 46
pass_ (djstripe.enums.CardCheckResult attribute), 22
past_due (djstripe.enums.SubscriptionStatus at-

tribute), 32
pay (djstripe.enums.SubmitTypeStatus attribute), 32
payment (djstripe.enums.BalanceTransactionType at-

tribute), 20
payment_failure_refund

(djstripe.enums.BalanceTransactionType
attribute), 20

payment_intent_authentication_failure
(djstripe.enums.ApiErrorCode attribute), 18

payment_intent_incompatible_payment_method
(djstripe.enums.ApiErrorCode attribute), 18

payment_intent_invalid_parameter
(djstripe.enums.ApiErrorCode attribute),
18

payment_intent_payment_attempt_failed
(djstripe.enums.ApiErrorCode attribute), 18

payment_intent_unexpected_state
(djstripe.enums.ApiErrorCode attribute),
18

payment_method_unactivated
(djstripe.enums.ApiErrorCode attribute),
18

payment_method_unexpected_state
(djstripe.enums.ApiErrorCode attribute),
18

payment_refund (djstripe.enums.BalanceTransactionType
attribute), 20

PaymentIntent (class in djstripe.models), 50
PaymentIntentStatus (class in djstripe.enums), 26
PaymentMethod (class in djstripe.models), 58
Payout (class in djstripe.models), 48
payout (djstripe.enums.BalanceTransactionType

attribute), 20
payout_cancel (djstripe.enums.BalanceTransactionType

attribute), 20
payout_failure (djstripe.enums.BalanceTransactionType

attribute), 20
PayoutFailureCode (class in djstripe.enums), 26

140 Index

dj-stripe Documentation, Release 2.3.0

PayoutMethod (class in djstripe.enums), 27
payouts_not_allowed

(djstripe.enums.ApiErrorCode attribute),
19

PayoutStatus (class in djstripe.enums), 27
PayoutType (class in djstripe.enums), 27
pdf (djstripe.enums.FileUploadType attribute), 25
pending (djstripe.enums.BalanceTransactionStatus at-

tribute), 20
pending (djstripe.enums.ChargeStatus attribute), 23
pending (djstripe.enums.PayoutStatus attribute), 27
pending (djstripe.enums.RefundStatus attribute), 31
pending (djstripe.enums.SourceCodeVerificationStatus

attribute), 31
pending (djstripe.enums.SourceRedirectStatus at-

tribute), 32
pending (djstripe.enums.SourceStatus attribute), 29
pending_charges (djstripe.models.Customer at-

tribute), 41
per_unit (djstripe.enums.PlanBillingScheme at-

tribute), 28
Plan (class in djstripe.models), 70
plan (djstripe.models.Invoice attribute), 68
PlanAggregateUsage (class in djstripe.enums), 27
PlanBillingScheme (class in djstripe.enums), 28
PlanInterval (class in djstripe.enums), 28
PlanTiersMode (class in djstripe.enums), 28
PlanUsageType (class in djstripe.enums), 28
platform_api_key_expired

(djstripe.enums.ApiErrorCode attribute),
19

png (djstripe.enums.FileUploadType attribute), 25
postal_code_invalid

(djstripe.enums.ApiErrorCode attribute),
19

prepaid (djstripe.enums.CardFundingType attribute),
22

process() (djstripe.models.Event class method), 46
processing (djstripe.enums.IntentStatus attribute), 25
processing (djstripe.enums.PaymentIntentStatus at-

tribute), 26
processing (djstripe.enums.SetupIntentStatus at-

tribute), 26
processing_error (djstripe.enums.ApiErrorCode

attribute), 19
processing_error (djstripe.enums.SourceRedirectFailureReason

attribute), 32
Product (class in djstripe.models), 52
product_inactive (djstripe.enums.ApiErrorCode

attribute), 19
product_not_received

(djstripe.enums.DisputeReason attribute),
24

product_unacceptable

(djstripe.enums.DisputeReason attribute),
24

ProductType (class in djstripe.enums), 29
purge() (djstripe.models.Customer method), 43

R
rate_limit (djstripe.enums.ApiErrorCode attribute),

19
reactivate() (djstripe.models.Subscription method),

76
receiver (djstripe.enums.SourceFlow attribute), 29
redirect (djstripe.enums.SourceFlow attribute), 29
Refund (class in djstripe.models), 54
refund (djstripe.enums.BalanceTransactionType

attribute), 20
refund() (djstripe.models.Charge method), 38
refund_failure (djstripe.enums.BalanceTransactionType

attribute), 20
RefundFailureReason (class in djstripe.enums), 30
RefundReason (class in djstripe.enums), 31
RefundStatus (class in djstripe.enums), 31
remove() (djstripe.models.Card method), 58
repeating (djstripe.enums.CouponDuration at-

tribute), 23
requested_by_customer

(djstripe.enums.RefundReason attribute),
31

requires_action (djstripe.enums.IntentStatus at-
tribute), 25

requires_action (djstripe.enums.PaymentIntentStatus
attribute), 26

requires_action (djstripe.enums.SetupIntentStatus
attribute), 26

requires_capture (djstripe.enums.PaymentIntentStatus
attribute), 26

requires_confirmation
(djstripe.enums.IntentStatus attribute), 25

requires_confirmation
(djstripe.enums.PaymentIntentStatus attribute),
26

requires_confirmation
(djstripe.enums.SetupIntentStatus attribute), 26

requires_payment_method
(djstripe.enums.IntentStatus attribute), 26

requires_payment_method
(djstripe.enums.PaymentIntentStatus attribute),
26

requires_payment_method
(djstripe.enums.SetupIntentStatus attribute), 26

reserve_transaction
(djstripe.enums.BalanceTransactionType
attribute), 20

reserved_funds (djstripe.enums.BalanceTransactionType
attribute), 20

Index 141

dj-stripe Documentation, Release 2.3.0

resource_already_exists
(djstripe.enums.ApiErrorCode attribute),
19

resource_missing (djstripe.enums.ApiErrorCode
attribute), 19

retry() (djstripe.models.Invoice method), 68
retry_unpaid_invoices()

(djstripe.models.Customer method), 43
reusable (djstripe.enums.SourceUsage attribute), 31
reverse (djstripe.enums.CustomerTaxExempt at-

tribute), 23
routing_number_invalid

(djstripe.enums.ApiErrorCode attribute),
19

S
ScheduledQueryRun (class in djstripe.models), 92
ScheduledQueryRunStatus (class in

djstripe.enums), 29
secret_key_required

(djstripe.enums.ApiErrorCode attribute),
19

send_invoice (djstripe.enums.InvoiceCollectionMethod
attribute), 25

send_invoice() (djstripe.models.Customer method),
43

sepa_credit_transfer
(djstripe.enums.SourceType attribute), 30

sepa_debit (djstripe.enums.SourceType attribute), 30
sepa_unsupported_account

(djstripe.enums.ApiErrorCode attribute),
19

service (djstripe.enums.ProductType attribute), 29
SetupIntentStatus (class in djstripe.enums), 26
shipping_calculation_failed

(djstripe.enums.ApiErrorCode attribute),
19

single_use (djstripe.enums.SourceUsage attribute),
31

sku_inactive (djstripe.enums.ApiErrorCode at-
tribute), 19

sofort (djstripe.enums.SourceType attribute), 30
Source (class in djstripe.models), 60
SourceCodeVerificationStatus (class in

djstripe.enums), 31
SourceFlow (class in djstripe.enums), 29
SourceRedirectFailureReason (class in

djstripe.enums), 32
SourceRedirectStatus (class in djstripe.enums),

32
SourceStatus (class in djstripe.enums), 29
SourceType (class in djstripe.enums), 30
SourceUsage (class in djstripe.enums), 31
standard (djstripe.enums.AccountType attribute), 19

standard (djstripe.enums.PayoutMethod attribute), 27
started_during() (djstripe.managers.SubscriptionManager

method), 33
started_plan_summary_for()

(djstripe.managers.SubscriptionManager
method), 33

state_unsupported (djstripe.enums.ApiErrorCode
attribute), 19

str_parts() (djstripe.models.Account method), 86
str_parts() (djstripe.models.BankAccount method),

56
str_parts() (djstripe.models.Card method), 58
str_parts() (djstripe.models.Charge method), 38
str_parts() (djstripe.models.Coupon method), 63
str_parts() (djstripe.models.Customer method), 44
str_parts() (djstripe.models.Dispute method), 45
str_parts() (djstripe.models.Event method), 47
str_parts() (djstripe.models.Invoice method), 68
str_parts() (djstripe.models.InvoiceItem method),

70
str_parts() (djstripe.models.PaymentIntent

method), 52
str_parts() (djstripe.models.PaymentMethod

method), 59
str_parts() (djstripe.models.Payout method), 49
str_parts() (djstripe.models.Plan method), 72
str_parts() (djstripe.models.Source method), 61
str_parts() (djstripe.models.Subscription method),

77
str_parts() (djstripe.models.Transfer method), 90
str_parts() (djstripe.models.UpcomingInvoice

method), 83
stripe_fee (djstripe.enums.BalanceTransactionType

attribute), 20
stripe_fx_fee (djstripe.enums.BalanceTransactionType

attribute), 20
stripe_temporary_api_version()

(djstripe.context_managers method), 16
SubmitTypeStatus (class in djstripe.enums), 32
subscribe() (djstripe.models.Customer method), 41
subscriber_has_active_subscription()

(djstripe.utils method), 98
Subscription (class in djstripe.models), 73
subscription (djstripe.models.Customer attribute),

43
subscription_canceled

(djstripe.enums.DisputeReason attribute),
24

SubscriptionItem (class in djstripe.models), 77
SubscriptionManager (class in djstripe.managers),

33
SubscriptionPaymentMiddleware (class in

djstripe.middleware), 34
SubscriptionStatus (class in djstripe.enums), 32

142 Index

dj-stripe Documentation, Release 2.3.0

succeeded (djstripe.enums.ChargeStatus attribute), 23
succeeded (djstripe.enums.PaymentIntentStatus

attribute), 26
succeeded (djstripe.enums.RefundStatus attribute), 31
succeeded (djstripe.enums.SetupIntentStatus at-

tribute), 26
succeeded (djstripe.enums.SourceCodeVerificationStatus

attribute), 31
succeeded (djstripe.enums.SourceRedirectStatus at-

tribute), 32
sum (djstripe.enums.PlanAggregateUsage attribute), 28
sync_from_stripe_data()

(djstripe.models.Account class method),
86

sync_from_stripe_data()
(djstripe.models.ApplicationFee class method),
88

sync_from_stripe_data()
(djstripe.models.BalanceTransaction class
method), 35

sync_from_stripe_data()
(djstripe.models.BankAccount class method),
56

sync_from_stripe_data() (djstripe.models.Card
class method), 58

sync_from_stripe_data()
(djstripe.models.Charge class method), 38

sync_from_stripe_data()
(djstripe.models.CountrySpec class method),
89

sync_from_stripe_data()
(djstripe.models.Coupon class method),
63

sync_from_stripe_data()
(djstripe.models.Customer class method),
44

sync_from_stripe_data()
(djstripe.models.Dispute class method),
45

sync_from_stripe_data() (djstripe.models.Event
class method), 47

sync_from_stripe_data()
(djstripe.models.FileUpload class method),
48

sync_from_stripe_data()
(djstripe.models.Invoice class method), 68

sync_from_stripe_data()
(djstripe.models.InvoiceItem class method), 70

sync_from_stripe_data()
(djstripe.models.PaymentIntent class method),
52

sync_from_stripe_data()
(djstripe.models.PaymentMethod class
method), 60

sync_from_stripe_data()
(djstripe.models.Payout class method), 49

sync_from_stripe_data() (djstripe.models.Plan
class method), 72

sync_from_stripe_data()
(djstripe.models.Product class method),
53

sync_from_stripe_data()
(djstripe.models.Refund class method), 55

sync_from_stripe_data()
(djstripe.models.ScheduledQueryRun class
method), 93

sync_from_stripe_data()
(djstripe.models.Source class method), 61

sync_from_stripe_data()
(djstripe.models.Subscription class method),
77

sync_from_stripe_data()
(djstripe.models.SubscriptionItem class
method), 78

sync_from_stripe_data()
(djstripe.models.TaxRate class method),
79

sync_from_stripe_data()
(djstripe.models.Transfer class method),
90

sync_from_stripe_data()
(djstripe.models.TransferReversal class
method), 91

sync_from_stripe_data()
(djstripe.models.UpcomingInvoice class
method), 84

sync_from_stripe_data()
(djstripe.models.UsageRecord class method),
85

T
tax_document_user_upload

(djstripe.enums.FileUploadPurpose attribute),
25

tax_fee (djstripe.enums.BalanceTransactionType at-
tribute), 20

tax_id_invalid (djstripe.enums.ApiErrorCode at-
tribute), 19

taxes_calculation_failed
(djstripe.enums.ApiErrorCode attribute),
19

TaxRate (class in djstripe.models), 78
testmode_charges_only

(djstripe.enums.ApiErrorCode attribute),
19

three_d_secure (djstripe.enums.SourceType at-
tribute), 30

Index 143

dj-stripe Documentation, Release 2.3.0

tiered (djstripe.enums.PlanBillingScheme attribute),
28

timed_out (djstripe.enums.ScheduledQueryRunStatus
attribute), 29

tls_version_unsupported
(djstripe.enums.ApiErrorCode attribute),
19

token_already_used
(djstripe.enums.ApiErrorCode attribute),
19

token_in_use (djstripe.enums.ApiErrorCode at-
tribute), 19

topup (djstripe.enums.BalanceTransactionType at-
tribute), 20

topup_reversal (djstripe.enums.BalanceTransactionType
attribute), 20

Transfer (class in djstripe.models), 89
transfer (djstripe.enums.BalanceTransactionType at-

tribute), 21
transfer_cancel (djstripe.enums.BalanceTransactionType

attribute), 21
transfer_refund (djstripe.enums.BalanceTransactionType

attribute), 21
TransferManager (class in djstripe.managers), 33
TransferReversal (class in djstripe.models), 91
transfers_not_allowed

(djstripe.enums.ApiErrorCode attribute),
19

trialing (djstripe.enums.SubscriptionStatus at-
tribute), 32

U
unavailable (djstripe.enums.CardCheckResult

attribute), 22
unchecked (djstripe.enums.CardCheckResult at-

tribute), 22
under_review (djstripe.enums.DisputeStatus at-

tribute), 24
UnionPay (djstripe.enums.CardBrand attribute), 22
Unknown (djstripe.enums.CardBrand attribute), 22
unknown (djstripe.enums.CardFundingType attribute),

22
unknown (djstripe.enums.RefundFailureReason at-

tribute), 30
unpaid (djstripe.enums.SubscriptionStatus attribute),

32
unrecognized (djstripe.enums.DisputeReason at-

tribute), 24
unsupported_card (djstripe.enums.PayoutFailureCode

attribute), 27
upcoming() (djstripe.models.Invoice class method), 67
upcoming_invoice() (djstripe.models.Customer

method), 44
UpcomingInvoice (class in djstripe.models), 79

update() (djstripe.models.Subscription method), 75
upstream_order_creation_failed

(djstripe.enums.ApiErrorCode attribute),
19

url_invalid (djstripe.enums.ApiErrorCode at-
tribute), 19

UsageRecord (class in djstripe.models), 84
user_abort (djstripe.enums.SourceRedirectFailureReason

attribute), 32

V
valid_subscriptions (djstripe.models.Customer

attribute), 43
validated (djstripe.enums.BankAccountStatus at-

tribute), 21
validation (djstripe.enums.BalanceTransactionType

attribute), 21
verb (djstripe.models.Event attribute), 47
verification_failed

(djstripe.enums.BankAccountStatus attribute),
21

verified (djstripe.enums.BankAccountStatus at-
tribute), 21

Visa (djstripe.enums.CardBrand attribute), 22
volume (djstripe.enums.PlanTiersMode attribute), 28

W
warning_closed (djstripe.enums.DisputeStatus at-

tribute), 24
warning_needs_response

(djstripe.enums.DisputeStatus attribute),
24

warning_under_review
(djstripe.enums.DisputeStatus attribute),
24

WebhookEventTrigger (class in djstripe.models),
93

week (djstripe.enums.PlanInterval attribute), 28
won (djstripe.enums.DisputeStatus attribute), 24

X
xls (djstripe.enums.FileUploadType attribute), 25
xlsx (djstripe.enums.FileUploadType attribute), 25

Y
year (djstripe.enums.PlanInterval attribute), 28

144 Index

	Contents
	Installation
	A note on Stripe API versions
	A note on Stripe Elements JS methods
	Checking if a customer has a subscription
	Subscribing a customer to a plan
	Creating a one-off charge for a customer
	Restricting access to only active subscribers
	Managing subscriptions and payment sources
	Creating invoices
	Running reports
	Webhooks
	Manually syncing data with Stripe
	Cookbook
	Context Managers
	Decorators
	Enumerations
	Managers
	Middleware
	Models
	Settings
	Utilities
	Contributing
	Test Fixtures
	Credits
	History
	Support
	Release Process

	Constraints
	Index

